Package ‘openPrimeR’

August 22, 2017

Title Multiplex PCR Primer Design and Analysis
Version 0.99.0

Description An implementation of methods for designing, evaluating,
and comparing primer sets for multiplex PCR.
Primers are designed by solving a set cover problem such that
the number of covered template sequences is maximized with
the smallest possible set of primers.
To guarantee that high-quality primers are generated,
only primers fulfilling constraints on their physicochemical properties
are selected. All relevant functions are accessible through
a user-friendly Shiny application.

Depends R (>=3.3.3)
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1

Imports Biostrings (>=2.38.4),
XML (>=3.98-1.4),
scales (>= 0.4.0),
reshape2 (>=1.4.1),
seqinr (>= 3.3-3),

IRanges (>= 2.4.8),
GenomicRanges (>= 1.22.4),
ggplot2 (>=2.1.0),

plyr (>=1.8.4),

dplyr (>=0.5.0),

stringdist (>= 0.9.4.1),
stringr (>= 1.0.0),
RColorBrewer (>= 1.1-2),
DECIPHER (>=1.16.1),
IpSolveAPI (>=5.5.2.0-17),
digest (>=0.6.9),

Hmisc (>=3.17-4),

ape (>=3.5),

BiocGenerics (>= 0.16.1),
S4Vectors (>=0.8.11),
foreach (>= 1.4.3),

magrittr (>= 1.5),

distr (>=2.6),

distrEx (>= 2.6),
fitdistrplus (>= 1.0-7),
uniqtag (>= 1.0),
openxlsx (>=4.0.17),
grid (>=3.1.0),
grDevices (>= 3.1.0),
stats (>= 3.1.0),

utils (>= 3.1.0),
methods (>= 3.1.0)

Suggests shiny (>= 1.0.2),
shinyjs (>=0.9),
shinyBS (>=0.61),
DT (>=0.2),
testthat (>=1.0.2),
knitr (>=1.13),
rmarkdown (>= 1.0),
devtools (>=1.12.0),
doParallel (>= 1.0.10),
pander (>= 0.6.0),
learnr (>=0.9)

SystemRequirements MAFFT (>= 7.305),
OligoArrayAux (>= 3.8),
ViennaRNA (>=2.2.4),

MELTING (>=5.1.1),
Pandoc (>=1.12.3)

biocViews Software, Technology
VignetteBuilder knitr

Collate 'Comparison.R'
'templates.R’
'primers.R’
TO.R'
'TO_view.R'
'Tppolito.R'
'RefCoverage.R'
'Tiller.R'
'ambiguity.R'
'check_stop_codons.R’
'con_annealing_temperature.R’
'con_dimerization.R'
'con_gc_clamp.R’
'con_gc_ratio.R'
'con_melting_temperature.R'
'con_primer_coverage.R'
'con_primer_efficiency.R'
'con_primer_secondary_structures.R'
'con_repeats.R’
'‘con_runs.R'
'con_template_secondary_structures.R'
'constraints.R'
'constraints_eval.R'

R topics documented: 3

‘errors.R’

filters.R'
'helper_functions.R'
'initialize_primers.R'
'initialize_primers_tree.R’
'openPrimeR.R'
'optimization_ILP.R'
'optimization_algo.R'
'optimization_global.R’'
'optimization_greedy.R'
'plots_comparison.R’
'settings.R'
'plots_constraints.R'
'plots_coverage.R'
‘plots_filtering.R'
'primer_significance.R'
'startApp.R'

'zzz.R'

R topics documented:

openPrimeR-package 4
adjust_binding_regions 5
assign_binding_regions 6
check _constraints e 7
check_restriction_Sites e e e e e e e e e 9
classify_design_problem Lo 10
CompariSon e 11
conOptionS e e e 12
constraintLimits e e e 13
ConstraintOptions-class L 14
CONSLIAINES ottt e e e e e e e e e e e e e e e e e 15
ConstraintSettings-class e 16
CoverageConstraints-class 19
create_coverage_XIS e e e e e 20
CrEALE_TEPOIT .+ . v v v v e i e e e e e e e e e e e e e e e e e e 21
CVZ_CONSIIAINES v v it e e e e e e e e e e e e e e e e e 22
DesignSettings-class 23
design_primers 24
filter_primers 27
get_comparison_table Lo 28
GEL_CVE_TAatio v e e e e e 28
GEL CVEZ_SEAtS L e e e e e e 29
get_Cvg_stats_Primer e e e 30
get_initial_primers L. e 31
Ippolito 33
parallel_setup e 33
PCR . . . e 34
PCR_Conditions-class e e e e 35
PlOt_CONSErvation e e e e e e e 36
plot_constraint e e e e e e e 37

plot_constraint_deviation oL 38

Index

openPrimeR-package

plot_constraint_fulfillment L o 39
plot_cvg constraintso Lo e e e e e 40
PlOt_CVE_VS_SEL_SIZE v i vt e e e e e e e 40
plot_penalty_vs_Set_Siz€ 41
PlOtL_primer e e e e e 42
plot_primer_binding_regions e 43
Plot_primer_Cvg 44
plot_primer_subsets e e e e 45
plot_template_cvg e e e e 46
Primers-class e 47
primer_significance oL e 49
read_primers e e 50
read_settings L. 51
read_templates e e e 52
RefCoverage e 54
runTutorial e e 54
SCOTE_CONSEIVAtION v v it et et et e e e e e e e e e e e e e 55
score_degen 56
SCOTE_PIIMETS . . o . v v v v v e 57
select_regions_by_conservation e 58
SEATLADD -« o e e e e e e e e 59
SUDSEL_PIIMEr_SEL v v v v et e e e e e e e e e e e e e e e 59
Templates-class e e 60
Tiller e e e 61
update_template_cvg L. e e e 62
WIE_PIIMEIS o o ittt e e e e e e e e 63
WIte_Settings o o e e e 63
write_templates e e e e 64
65

openPrimeR-package Multiplex PCR Primer Design and Analysis.

Description

With openPrimeR you can evaluate existing primers or design novel primers for multiplex poly-
merase chain reaction that are optimized with respect to the coverage of template sequences and the
physicochemical properties of the primers.

Details

For designing primers, you just need the function design_primers from openPrimeR. As a mini-
mal input, this function requires:

A set of template sequences You an load a Templates object with read_templates.

Settings for primer design You can load a DesignSettings object from a (supplied) XML file

with read_settings. The settings can be easily customized using the setters constraints,
constraintLimits, cvg_constraints, conOptions, and PCR.

adjust_binding_regions 5

For evaluating existing primers you can load a FASTA or CSV file containing the primers and tem-
plates of of interest using read_primers and read_templates, respectively. After evaluating the
properties of the primers using check_constraints, you can interpret the results with several func-
tions. For example, you can analyze the coverage of the template sequences using get_cvg_stats,
determine the deviation from the target constraints using plot_constraint_deviation, or create
a comprehensive report on the analyzed primers using create_report. In order to compare sev-
eral primer sets with each other, you can create a table of the properties of the primer sets using
get_comparison_table or create a full report, again using create_report.

Package options
openPrimeR uses the following options:
openPrimeR.constraint_order The identifiers of constraints in the order they are applied during
the filtering procedure. This order is maintained when loading a DesignSettings object.

openPrimeR.relax_order The identifiers of constraints in the order in which they shall be relaxed
during the relaxation procedure when designing primers.

openPrimeR.plot_abbrev The maximal number of allowed characters for tick labels in plots.

openPrimeR.plot_colors A named vector providing the identifiers of RColorBrewer palettes.
Each vector entry provides the plotting colors for a specific type of stratification (i.e. by run,
constraint, or primer). The palettes should provide at least eight colors.

Author(s)

Maintainer: Matthias Doring <mdoering@mpi-inf.mpg.de>
Authors:

¢ Nico Pfeifer <pfeifer@informatik.uni-tuebingen.de>

adjust_binding_regions
Adjustment of Existing Binding Regions.

Description
Adjusts the existing annotation of binding regions by specifying a new binding interval relative to
the existing binding region.

Usage

adjust_binding_regions(template.df, region.fw, region.rev)

Arguments

template.df A Templates object providing the template sequences for which the binding
regions shall be adjusted.

region.fw Interval of new binding regions relative to the forward binding region defined in
template.df.

region.rev Interval of new binding regions relative to the reverse binding region defined in
template.df

Details

assign_binding_regions

The new binding intervals provided by fw and rev for forward and reverse primers, respectively,
are provided relative to the existing definition of binding regions in template.df, which can be set
using assign_binding_regions. When specifying relative positions, position @ is defined as the
first position after the end of the existing binding region. Hence, negative positions relate to regions
within the existing binding region while non-negative values extend the binding region further.

Value

A Templates object with updated binding regions.

Examples

data(Ippolito)

Extend the binding region by one position

relative.interval <- c(-max(template.df$Allowed_End_fw), @)

template.df.adj <- adjust_binding_regions(template.df, relative.interval)

compare old and new annotations:

head(cbind(template.df$Allowed_Start_fw, template.df$Allowed_End_fw))
head(cbind(template.df.adj$Allowed_Start_fw, template.df.adj$Allowed_End_fw))

assign_binding_regions

Assignment of Template Binding Regions.

Description

Assigns the primer target binding regions to a set of template sequences.

Usage
assign_binding_regions(template.df, fw = NULL, rev = NULL,
optimize.region = FALSE, primer.length = 20, gap.char = "-")
Arguments

template.df

fw

rev

optimize.region

A Templates object containing the sequences for which primer binding regions
should be annotated.

Binding regions for forward primers. Either a numeric interval indicating a uni-
form binding range relative to the template 5’ end or a path to a FASTA file
providing binding sequences for every template. If fw is missing, only rev is
considered.

Binding regions for reverse primers. Either a numeric interval indicating a uni-
form binding range relative to the template 3’ end or the path to a FASTA file
providing binding sequences for every template. If rev is missing, only fw is
considered.

If TRUE, the binding regions specified via fw and rev are adjusted such that
binding regions that may form secondary structures are avoided. This feature
requires ViennaRNA (see notes). If FALSE (the default), the input binding re-
gions are not modified.

check constraints 7

primer.length A numeric scalar providing the probe length that is used for for adjusting the
primer binding regions when optimize.region is TRUE.

"non

gap.char The character indicating gaps in aligned sequences. The default is

Details

The arguments fw and rev provide data describing the binding regions of the forward and reverse
primers, respectively. To specify binding regions for each template individually, fw and rev should
provide the paths to FASTA files. The headers of these FASTA file should match the headers of
the loaded template.df and the sequences in the files specified by fw and rev should indicate the
target binding regions.

To specify uniform binding regions, fw and rev should be numeric intervals indicating the allowed
binding range for primers in the templates. The fw interval is specified with respect to the 5’ end,
while the rev interval is specified with respect to the template 3’ end. If optimize.region is TRUE,
the input binding region is adjusted such that regions forming secondary structures are avoided.

Value

An object of class Templates with assigned binding regions.

Note

The program ViennaRNA (https://www.tbi.univie.ac.at/RNA/) must be installed to perform the
computations that are triggered when optimize.region is set to TRUE.

See Also

Other template functions: Templates-class, read_templates, update_template_cvg,write_templates

Examples

data(Ippolito)

Assignment of individual binding regions

1l.fasta.file <- system.file("extdata”, "IMGT_data"”, "templates”,

"Homo_sapiens_IGH_functional_leader.fasta"”, package = "openPrimeR")

template.df.individual <- assign_binding_regions(template.df, 1.fasta.file, NULL)

Assign the first/last 30 bases as forward/reverse binding regions

template.df.uniform <- assign_binding_regions(template.df, c(1,30), c(1,30))

Optimization of binding regions (requires ViennaRNA)

Not run: template.df.opti <- assign_binding_regions(template.df, c(1,30), c(1,30),
optimize.region = TRUE, primer.length = 20)

End(Not run)

check_constraints Evaluation of Primer Constraints.

Description

Determines whether a set of primers fulfills the constraints on the properties of the primers.

8 check_constraints

Usage

check_constraints(primer.df, template.df, settings,
active.constraints = names(constraints(settings)),
to.compute.constraints = active.constraints, for.shiny = FALSE,
updateProgress = NULL)

Arguments
primer.df A Primers object containing the primers whose properties are to be checked.
template.df A Templates object containing the template sequences corresponding to primer.df.
settings A DesignSettings object containing the constraints that are to be evaluated.

active.constraints
A subset of the constraint identifiers provided by settings that are to be checked
for fulfillment. By default active.constraints is NULL such that all con-
straints found in settings are evaluated. Otherwise, only the constraints spec-
ified via active.constraints that are available in settings are considered.

to.compute.constraints
Constraints that are to be computed. By default, to.compute.constraints is
set to NULL such that all active.constraints are computed. If to.compute.constraints
isasubset of active.constraints, all constraints specified via active.constraints
are evaluated for fulfillment, but only the constraints in to.compute.constraints
are newly calculated.

for.shiny Whether the output of the function shall be formatted as HTML. The default
setting is FALSE.

updateProgress Progress callback function for shiny. The defaut is NULL meaning that no progress
is monitored via the Shiny interface.

Details

When the optional argument active.constraints is supplied, only a subset of the constraints
provided in settings is evaluated. Only constraints that are defined in settings can be com-
puted. For a detailed description of all possible constraints and their options, please consider the
ConstraintSettings documentation.

Value

A Primers object that is augmented with columns indicating the results for each evaluated con-
straint. The constraints_passed column indicates whether all active.constraints were ful-
filled. The EVAL_* columns indicate the fulfillment of primer-specific constraints. The T_EVAL_x
columns indicate the fulfillment of template-specific (e.g. coverage-based) constraints. For the cov-
erage computations, columns prefixed by Basic_, indicate the results from string matching, while
all other results (e.g. primer_coverage) indicate the expected coverage after applying the coverage
constraints specified in settings. Columns prefixed by Of f_ indicate off-target binding results.

Note

Please note that some constraints can only be computed if additional software is installed, please
see the documentation of DesignSettings for an overview.

check_restriction_sites 9

See Also

Other primer functions: Primers-class, check_restriction_sites, create_report,design_primers,
filter_primers, get_initial_primers, primer_significance, score_degen,write_primers

Examples

data(Ippolito)
settings.xml <- system.file("extdata”, "settings”,
"C_Tagq_PCR_high_stringency.xml”, package = "openPrimeR")
settings <- read_settings(settings.xml)
Check all constraints in 'settings' for the first two primers:
constraint.df <- check_constraints(primer.df[1:2,], template.df,
settings, active.constraints = names(constraints(settings)))
Summarize the evaluation results
summary (constraint.df)

check_restriction_sites
Identification of Sequence Restriction Sites.

Description

Checks a set of primers for the presence of restriction sites. To reduce the number of possible re-
striction sites, only unambiguous restriction sites are taken into account and only common (typically
used) restriction sites are checked if a common restriction site can be found in a sequence.

Usage

check_restriction_sites(primer.df, template.df, adapter.action = c("warn”,
"rm"), selected = NULL, only.confident.calls = TRUE,
updateProgress = NULL)

Arguments
primer.df A Primers object containing the primer nucleotide sequences to be checked for
restriction sites.
template.df An object of class Templates containing the templates corresponding to primer . df.

adapter.action The action to be performed when adapter sequences are found. Either "warn"
to issue a warning about adapter sequences or "rm" to remove identified adapter
sequences. Currently, only the default setting ("warn") is supported.

selected Names of restriction sites that are to be checked. By default selected is NULL
in which case all REBASE restriction sites are taken into account.

only.confident.calls
Whether only confident calls of restriction sites are returned. All restriction site
call is considered confident if the restriction site is located in a region that does
not match the template sequences. Note that this classification requires that
the provided primers are somehow complementary to the provided templates.
In contrast, non-confident restriction site calls are based solely on the primer
sequences and do not take the templates into account, resulting in more false
positive calls of restriction sites.

updateProgress A Shiny progress callback function. The default is NULL meaning that no progress
is tracked via the Shiny app.

10 classify_design_problem

Value

A data frame with possible restriction sites found in every primer.

References

Roberts, R.J., Vincze, T., Posfai, J., Macelis, D. (2010) REBASE—-a database for DNA restriction
and modification: enzymes, genes and genomes. Nucl. Acids Res. 38: D234-D236. http://rebase.neb.com

See Also
Other primer functions: Primers-class, check_constraints, create_report, design_primers,
filter_primers,get_initial_primers, primer_significance, score_degen,write_primers

Examples

data(Ippolito)
Check the first primer for restriction sites:
site.df <- check_restriction_sites(primer.df[1,], template.df)

classify_design_problem
Classification of the Difficulty of a Primer Design Task.

Description

Uses reference beta distributions of primer coverage ratios to classify a primer design task into the
groups ranging from easy to hard. For easy tasks, it should not be a problem to design a small
primer set. For hard tasks, however, a small set of primers may not be achievable.

Usage

classify_design_problem(template.df, mode.directionality = c("both”, "fw",
"rev"), primer.length = 18, primer.estimate = FALSE, required.cvg = 1)

Arguments

template.df A Templates object providing the template sequences for which the difficulty
of designing primers shall be estimated.

mode.directionality
The directionality of the primers that are to be designed. Either fw for forward
primers, rev for reverse primers, or both for primers of both directions. By
default, both directions are considered.

primer.length A scalar numeric providing the target length of the designed primers. The de-
fault length of generated primers is set to 18.

primer.estimate
Whether the number of required primers shall be estimated. By default (FALSE),
the number of required primers is not estimated.

required.cvg A scalar numeric in the range [0,1] providing the target coverage ratio for de-
signing primers. The required. cvg is used only when primer.estimate is set
to TRUE such that a solution to the set cover problem is required.

Comparison 11

Details

The difficulty of a primer design task is evaluated by estimating the distribution of coverage ratios
per primer by performing exact string matching with primers of length primer.length, which are
constructed by extracting template subsequences. Next, a beta distribution is fitted to the estimated
coverage distribution, which is then compare to reference distributions representing primer design
problems of different difficulties via the total variance distance. The difficulty of the input primer
design problem is found by selecting the class of the reference distributions that has the smallest
distance to the estimated coverage distribution. An estimate of the required number of primers to
reach a given required.cvg can be computed by setting primer.estimate to TRUE. Since this
estimate is based solely on perfect matching primers, the number of primers that would actually be
required is typically less.

Value

A list with the following fields:

Classification The estimated difficulty of the primer design task.

Class-Distances The total variance distance of the fitted beta distribution to the reference distri-
bution.

Confidence The confidence in the estimate of the design tasks’ difficulty as based on the class
distances.

Uncertain Whether the classification is highly uncertain, that is low-confidence.

Nbr_primers_fw and Nbr_primers_rev The respective number of required forward and reverse
primers if primer.estimate was set to TRUE.

Examples

data(Ippolito)

design.estimate <- classify_design_problem(template.df)

Estimate the number of required primers to amplify the first 10 templates

design.estimate.nbr <- classify_design_problem(template.df[1:10,], mode.directionality = "fw",
primer.length = 20, primer.estimate = TRUE)

Comparison Evaluated Primer Data for Comparison.

Description

Evaluated primer sets targeting the functional human IGH immunoglobulin genes. The sets were
generated using the default evaluation settings of openPrimeR. The primer sets were gathered from
IMGT and the literature.

Usage

data(Comparison)

Format

primer.data and template.data are lists of Primers and Templates objects, respectively.

12 conOptions

References

IMGT®, the international ImMunoGeneTics information system® http://www.imgt.org (founder
and director: Marie-Paule Lefranc, Montpellier, France).

Examples

Load 'primer.data' and 'template.data'

data(Comparison)

Explore the first entry of the primer and template data:
primer.datal[1]]

template.datal[[1]]

Summarize the primer properties:
get_comparison_table(template.data, primer.data)

conOptions Getter/Setter for Constraint Options.

Description

Gets the constraint settings of the provided DesignSettings object x.

Sets the constraint settings of the provided DesignSettings object x.
Usage
conOptions(x)

S4 method for signature 'DesignSettings'
conOptions(x)

conOptions(x) <- value

S4 replacement method for signature 'DesignSettings'
conOptions(x) <- value

Arguments
X A DesignSettings object.
value A list with constraint options. The permissible fields of the list and their types
are documented in the ConstraintOptions class.
Value

Gets the constraint options list.

Sets the specified list of constraint options.

See Also

Other settings functions: ConstraintOptions-class, ConstraintSettings-class, CoverageConstraints-class,
DesignSettings-class, PCR_Conditions-class, PCR, constraintLimits, constraints, cvg_constraints,
read_settings

constraintLimits 13

Examples

Load some settings

data(Ippolito)

View the active constraint options
conOptions(settings)

Prevent mismatch binding events
conOptions(settings)$allowed_mismatches <- @
View available constraint options

settings

constraintLimits Getter/Setter for Constraint Limits.

Description

Gets the constraint limits that are defined in the provided DesignSettings object x.

Sets the constraint limits of the provided DesignSettings object x.

Usage

constraintLimits(x)

S4 method for signature 'DesignSettings'
constraintLimits(x)

constraintLimits(x) <- value

S4 replacement method for signature 'DesignSettings'
constraintLimits(x) <- value

Arguments
X A DesignSettings object whose constraint limits are to be modified.
value A list with constraint boundaries. The permissible fields of the list are provided
in ConstraintSettings.
Value

Gets the list of constraint limits.

Sets the list of constraint limits.

See Also

Other settings functions: ConstraintOptions-class, ConstraintSettings-class, CoverageConstraints-class,
DesignSettings-class, PCR_Conditions-class, PCR, conOptions, constraints, cvg_constraints,
read_settings

14 ConstraintOptions-class

Examples

Load some settings

data(Ippolito)

View the active constraint limits

constraintLimits(settings)

Extend the GC relaxation limit
constraintLimits(settings)$gc_clamp <- c("min” = @, "max"” = 6)
View available constraints

settings

ConstraintOptions-class
Class for Constraint Options.

Description

The ConstraintOptions class encapsulates the options for constraint computations.

Value

A ConstraintOptions object.

Slots

status Named boolean vector indicating which of the possible options are active (TRUE) and which
are not (FALSE).

settings Named list with constraint options. The following fields are permissible:

allowed_mismatches: The maximal number of allowed mismatches between a primer and a
template sequence. If the number of mismatches of a primer with a template exceeds the
specified value, the primer is not considered to cover the corresponding template when
the coverage is being computed.

allowed_other_binding_ratio: Ratio of allowed binding events outside the target binding
ratio. This value should be in the interval [0,1]. If the specified value is greater than
zero, all coverage events outside the primer binding region are reported. If, however, the
identified ratio of off-target events should exceed the allowed ratio, a warning is issued.
If allowed_other_binding_ratio is set to @, only on-target primer binding events are
reported. The setting of allowed_other_binding_ratio is ignored when designing
primers, which always uses a value of 0.

allowed_region_definition: The definition of the target binding regions that is used for eval-
uating the coverage. In case that allowed_region_definition is within, primers have
to lie within the allowed binding region. If allowed_region_definition is any, primers
only have to overlap with the target binding region.

hexamer_coverage: If hexamer_coverage is set to "active", primers whose 3’ hexamer (the
last 6 bases) is fully complementary to the corresponding template region are automat-
ically considered to cover the template. If hexamer_coverage is set to inactive, hex-
amer complementarity does not guarantee template coverage.

See Also

Other settings functions: ConstraintSettings-class, CoverageConstraints-class, DesignSettings-class,
PCR_Conditions-class, PCR, conOptions, constraintLimits, constraints, cvg_constraints,
read_settings

constraints 15

Examples

Initialize a new 'ConstraintOptions' object:

constraint.options <- new("”ConstraintOptions")

Retrieve the constraint options from a 'DesignSettings' object:
data(Ippolito) # loads a 'DesignSettings' object into 'settings'
conOptions(settings)

Prevent off-target binding:
conOptions(settings)$allowed_other_binding_ratio <- @

constraints Getter/Setter for Constraints.

Description

Gets the active constraints of the provided DesignSettings object x.

Sets the active constraints of the provided DesignSettings object x.

Usage

constraints(x)

S4 method for signature 'DesignSettings'
constraints(x)

S4 method for signature 'AbstractConstraintSettings'
constraints(x)

constraints(x) <- value

S4 replacement method for signature 'DesignSettings,ANY'
constraints(x) <- value

S4 replacement method for signature 'AbstractConstraintSettings,list’
constraints(x) <- value

Arguments
X A DesignSettings object.
value A list with constraint settings. Each list entry should have a permissible name
and consist of at most two values providing the minimal and/or maximal allowed
values, which have to be denominated via min and max.
Details
For an overview of permissible constraints, please consider the ConstraintSettings documenta-
tion.
Value

Gets the list of constraints.

Sets the list of constraints.

16 ConstraintSettings-class

See Also

Other settings functions: ConstraintOptions-class, ConstraintSettings-class, CoverageConstraints-class,
DesignSettings-class, PCR_Conditions-class, PCR, conOptions, constraintLimits, cvg_constraints,
read_settings

Examples

Load some settings

data(Ippolito)

View the active constraints
constraints(settings)

Require a minimal GC clamp extent of @
constraints(settings)$gc_clamp["min"] <- @
View available constraints

settings

ConstraintSettings-class
Class for Constraint Settings.

Description

The ConstraintSettings class encapsulates the constraints on the physicochemical properties of
primers.

Details

You can check whether the constraint settings are fulfilled using check_constraints or filter ac-
cordingly using filter_primers.

Value

A ConstraintSettings object.

Slots

status Named boolean vector indicating which of the possible constraints are active (TRUE) and
which are not (FALSE).

settings Named list containing the settings of the active constraints: The list may contain the
following fields:
primer_coverage: The required number of covered template sequences per primer.

primer_specificity: The required required specificity of primers in terms of a ratio in the
interval [0,1].

primer_length: The required lengths of primer sequences.

gc_clamp: The desired number of GCs at primer 3’ termini.

gc_ratio: The desired ratio of GCs in primers in terms of numbers in the interval [0,1].
no_runs: The accepted length homopolymer runs in a primer.

no_repeats: The accepted length of dinucleotide repeats in a primer.

ConstraintSettings-class 17

self_dimerization: The lowest acceptable free energy [kcal/mol] for the interaction of a
primer with itself. The identification of self dimers requires the software OligoArrayAux
(see notes).

melting_temp_range: The desired melting temperature (Celsius) of primers. The accurate
computation of melting temperatures requires the software MELTING (see notes).

melting_temp_diff: The maximal allowed difference between the melting temperatures (Cel-
sius) of primers contained in the same set. The accurate computation of melting temper-
atures requires the software MELTING (see notes).

cross_dimerization: The lowest acceptable free energy [kcal/mol] for the interaction of a
primer with another primer. The identification of cross dimers requires the software
OligoArrayAux (see notes).

secondary_structure: The lowest acceptable free energy [kcal/mol] for the formation of
primer secondary structures. Secondary structures are determined using the software
ViennaRNA (see notes).

primer_coverage

Computing the primer coverage involves identifying which templates are expected to be amplified
(covered) by which primers. The primer_coverage constraint determines the minimal and maxi-
mal number of coverage events per primer that are required. The computation of primer coverage
is governed by the coverage constraints postulated via CoverageConstraints and the constraint
options defined via ConstraintOptions.

primer_specificity

Primer specificity is automatically determined during the primer coverage computations but the
constraint is only checked when the primer_specificity field is available. The specificity of a
primer is defined as its ratio of on-target vs total coverage events (including off-target coverage).
Low-specificity primers should be excluded as they may not amplify the target region effectively.

primer_length

The length of a primer is defined by its number of bases. Typical primers have lengths between 18
and 22. Longer primers may guarantee higher specificities.

gc_clamp

The GC clamp refers to the presence of GCs at the 3 end of a primer. For the gc_clamp constraint,
we consider the number of 3’ terminal GCs. For example, the primer actgaaatttcaccg has a GC
clamp of length 3. The presence of a GC clamp is supposed to aid the stability of the polymerase
complex. At the same time, long GC clamps should be avoided.

no_runs
Homopolymer runs (e.g. the primer aaaaa has a run of 5 A’s) may lead to secondary structure
formation and unspecific binding and should therefore be avoided.

no_repeats

Dinucleotide repeats (e.g. the primer tatata has 3 TA repeats) should be avoided for the same reason
a long homopolymer runs.

18 ConstraintSettings-class

self_dimerization

Self dimerization refers to a primer that binds to itself rather than to one of the templates. Primers
exhibiting self dimers should be avoided as they may prevent the primer from amplifying the tem-
plates. Therefore primers with small free energies of dimerization should be avoided.

melting_temp_range

The melting temperature is the temperature at which 50 are in duplex with templates and 50 Hence,
primers exhibiting high melting temperatures have high affinities to the templates, while primers
with small melting temperatures have small affinities. The melting temperatures of the primers
determine the annealing temperature of the PCR, which is why the melting temperatures of the
primers should not deviate too much (see melting_temp_diff).

melting_temp_diff

The differences between the melting temperatures of primers in a set of primers should not deviate
too much as the annealing temperaturte of a PCR should be based on the smallest melting tem-
perature of a primer in the set. If there are other primers in the set exhibiting considerably higher
melting temperatures, these primers may bind inspecifically due to the low annealing temperature.

cross_dimerization

When two different primers bind to each each other rather than to the templates, this is called cross
dimerization. Cross dimerization should be prevent at all costs because such primers cannot effec-
tively amplify their target templates. Cross dimerizing primers can be excluding primers exhibiting
small free energies of cross dimerization.

secondary_structure

When a primer exhibits secondary structure, this may prevent it from binding to the templates. To
prevent this, primers with low free energies of secondary structure formation can be excluded.

Note

External programs are required for computing the following constraints:

MELTING (http://www.ebi.ac.uk/biomodels/tools/melting/): Thermodynamic computations (op-
tional) for determining melting temperatures for the constraints melting_temp_diff and
melting_temp_range

OligoArrayAux (http://unafold.rna.albany.edu/OligoArrayAux.php): Thermodynamic compu-
tations used for computing self_dimerization and cross_dimerization. Also required
for computing primer_coverage when a constraint based on the free energy of annealing is
active.

ViennaRNA (http://www.tbi.univie.ac.at/RNA/): Secondary structure predictions used for the con-
straint secondary_structure

See Also

Other settings functions: ConstraintOptions-class, CoverageConstraints-class,DesignSettings-class,
PCR_Conditions-class, PCR, conOptions, constraintLimits, constraints, cvg_constraints,
read_settings

CoverageConstraints-class 19

Examples

Initializing a new 'ConstraintSettings' object:

constraint.settings <- new("ConstraintSettings"”)

Retrieving the constraint settings from a 'DesignSettings' object:

data(Ippolito) # loads a 'DesignSettings' object into 'settings'

constraints(settings)

Modifying the constraint settings:

constraints(settings)$no_runs["max"] <- 10

constraints(settings) <- constraints(settings)[names(constraints(settings)) != "gc_clamp"]

CoverageConstraints-class
Class for Coverage Constraints.

Description

The CoverageConstraints class encapsulates the conditions under which the coverage is evalu-
ated.

Value

A CoverageConstraints object.

Slots

status Named boolean vector indicating which of the possible options are active (TRUE) and which
are not (FALSE).

settings Named list with constraint options. Each list entry should have an entry min and/or max
in order to indicate the minimal and maximal allowed values, respectively. The following
identifiers can be used as coverage constraints:

primer_efficiency: The desired efficiencies of primer-template amplification events in or-
der to be considered as covered. primer_efficiency provides a value in the interval
[0,1], which is based on DECIPHER’s thermodynamic model, which considers the im-
pact of 3’ terminal mismatches.

annealing_DeltaG: The desired free energies of annealing for putative coverage events be-
tween primers and templates. Typically, one would limit the maximally allowed free
energy.

stop_codon: Whether coverage events introducing stop codons into the amplicons should
be allowed or discarded. Here, a value of 1 indicates coverage events that induce stop
codons. As such, setting both minimum and maximium to zero will disregard coverage
events inducing stop codons, while setting the minimum to zero and the maximum to 1
will allow coverage events that induce stop codons.

substitution: Whether coverage events introducing substitutions into the amino acid se-
quence are considered or discarded. The same encoding as for stop_codon is used, that
is, the value 1 indicates coverage events inducing substitutions. Hence, to prevent substi-
tutions, the maximal value of substitution can be set to zero.

terminal_mismatch_pos: The position relative to the primer 3’ terminal end for which mis-
match binding events should be allowed, where the last base in a primer is indicated by
position 1. For example, setting the minimal value of terminal_mismatch_pos to 7
means that only coverage events that do not have a terminal mismatch within the last 6
bases of the primer are allowed.

20 create_coverage_xIs

coverage_model: Use a logistic regression model combining the free energy of annealing
and 3’ terminal mismatch positions to determine the expected rate of false positive cover-
age calls. Using coverage_model, you can specify the allowed ratio of falsely predicted
coverage events. Typically, one would limit the maximal allowed rate of false positives.
Note that setting a small false positive rate will reduce the sensitivity of the coverage calls
(i.e. true positives will be missed).

Note
External programs are required for computing the following constraints:

OligoArrayAux (http://unafold.rna.albany.edu/OligoArrayAux.php): Thermodynamic compu-
tations used for computing the coverage constraints annealing_DeltaG, primer_efficiency,
and coverage_model

See Also

Other settings functions: ConstraintOptions-class, ConstraintSettings-class,DesignSettings-class,
PCR_Conditions-class, PCR, conOptions, constraintLimits, constraints, cvg_constraints,
read_settings

Examples

Initialize a new 'CoverageConstraints' object:

cvg.constraints <- new("CoverageConstraints”)

Retrieving the coverage constraints from a 'DesignSettings' object:
data(Ippolito) # loads a 'DesignSettings' object into 'settings'
cvg_constraints(settings)

Modifying the coverage constraints
cvg_constraints(settings)$primer_efficiency["min"] <- 0.001

create_coverage_xls Creation of a Coverage XLS Spreadsheet.

Description

Creation of an XLS spreadsheet providing an overview of the covered template sequences for each
primer. Each cell in the spreadsheet indicates a coverage event between a primer and template using
color codes. Identified coverage events are indicated by green, while primer-template pairs without
coverage are indicated by red. In case that a primer binding condition (see CoverageConstraints)
was active when computing the coverage, the numeric value of the coverage condition is annotated
for each cell.

Usage

create_coverage_xls(primer.df, template.df, filename, settings)

Arguments
primer.df A Primers object containg primers with evaluated coverage.
template.df A Templates object containing the templates corresponding to primer.df.
filename A character vector providing the filename for storing the XLS file.
settings A DesignSettings object providing the coverage conditions that are to be

shown in the spreadsheet.

create_report 21

Value

Creates a spreadsheet visualizing the primer coverage and stores it under filename.

Examples
data(Ippolito)
filename <- tempfile("cvg_overview”, fileext = ".x1s")

Store coverage of the first 2 primers as an XLS file
create_coverage_xls(primer.df[1:2,], template.df, filename, settings)

create_report Creation of a Primer PDF Report.

Description

Creates a PDF report for analyzed primer sets.

Usage
create_report(primers, templates, out.file, settings, sample.name = NULL,
used.settings = NULL, ...)
Arguments
primers To create a report for a single primer set, please provide an evaluated Primers

object. For creating a report comparing multiple primer sets, please provide a
list of Primers objects.

templates If primers is a Primers object, templates should be a Templates object. If
primers is a list of Primers objects, templates should be a list of Templates
objects of the same length as primers.

out.file A character vector giving the path to the file where the report should be stored.
settings The DesignSettings object that was used for analyzing the input primers.
sample.name An identifier for your analysis. By default (NULL), the sample identifier is se-

lected from the Run column of the input templates.

used.settings A named list (with fields fw and rev) containing the relaxed settings for de-
signing forward/reverse primers. By default (NULL), the relaxed settings are not
shown in the report.

required.cvg (optional, default: 1), the desired coverage ratio if primers is a
single primer set.
Value

Creates a PDF file summarizing the results from analyzing one or multiple sets of primers.

Note

Creating the report requires the external programs Pandoc (http://pandoc.org) and LaTeX (http://latex-
project.org).

22 cvg_constraints

See Also

Other primer functions: Primers-class, check_constraints, check_restriction_sites, design_primers,
filter_primers, get_initial_primers, primer_significance, score_degen,write_primers

Examples

setting.xml <- system.file("extdata”, "settings”,
"C_Tagq_PCR_high_stringency.xml”, package = "openPrimeR")

settings <- read_settings(setting.xml)

Creation of a report for a single primer set

data(Ippolito)

out.file.single <- tempfile("evaluation_report”, fileext = ".pdf")

create_report(primer.df, template.df, out.file.single, settings)

Creation of a report for multiple primer sets

data(Comparison)

out.file.comp <- tempfile(”comparison_report”, fileext = ".pdf")

create_report(primer.data[1:2], template.datal[1:2], out.file.comp, settings)

cvg_constraints Getter/Setter for Coverage Constraints.

Description

Gets the coverage constraints of the provided DesignSettings object x.

Sets the coverage constraints of the provided DesignSettings object x.
Usage
cvg_constraints(x)

S4 method for signature 'DesignSettings'
cvg_constraints(x)

cvg_constraints(x) <- value

S4 replacement method for signature 'DesignSettings'
cvg_constraints(x) <- value

Arguments
X A DesignSettings object.
value A list with coverage constraints. Each list entry must have a permissible name
and contain a numeric vector with at most two components describing the mini-
mal and/or maximal required values that are to be indicated viamin and max. The
permissible contraint identifiers are documented in the CoverageConstraints
class.
Value

Gets the list of coverage constraints.

Sets the list of coverage constraints.

DesignSettings-class 23

See Also

Other settings functions: ConstraintOptions-class, ConstraintSettings-class, CoverageConstraints-class,
DesignSettings-class, PCR_Conditions-class, PCR, conOptions, constraintLimits, constraints,
read_settings

Examples

Load some settings

data(Ippolito)

View all active coverage constraints

cvg_constraints(settings)

Increase the maximal false positive rate to increase the sensitiviity of coverage predictions
cvg_constraints(settings)$coverage_model <- c("max" = 0.1)

View available coverage constraints:

settings

DesignSettings-class Class for Primer Design Settings.

Description

The DesignSettings class encapsulates all settings for designing and evaluating primer sets. Upon
loading an XML file, the DesignSettings class checks whether the defined constraints can be
applied by identifying whether the requirements for external programs are fulfilled. If the require-
ments are not fulfilled, the affected constraints are removed from the loaded DesignSettings object
and a warning is issued. The loaded constraints are automatically ordered according to the option
openPrimeR.constraint_order such that the runtime of the design_primers and filter_primers
functions is optimized.

Details

Note that the fields Input_Constraints, Input_Constraint_Boundaries, and Coverage_Constraints
should contain entries with at most two components using the fields min and/or max.

The Input_Constraint_Boundaries should always be at least as general as the specified Input_Constraints.

Value

A DesignSettings object.

Slots

Input_Constraints A ConstraintSettings object specifying the desired target value ranges for
primer properties.

Input_Constraint_Boundaries A ConstraintSettings object specifying the limits for relax-
ing the constraints during the primer design procedure. This slot may contain the same fields
as the Input_Constraints slot, but the specified desired ranges should be at least as general
as those specified in the Input_Constraints slot.

Coverage_Constraints A CoverageConstraints object specifying the constraints for comput-
ing the primer coverage.

PCR_conditions A PCR_Conditions object specifying the PCR-related settings.

constraint_settings A ConstraintSettings object providing options for the computation of
individual physicochemical properties.

24 design_primers

See Also

read_settings for reading settings from XML files, write_settings for storing settings as XML
files, constraints for accessing constraints, constraintLimits for accessing constraint bound-
aries, cvg_constraints for accessing coverage constraints, conOptions for accessing constraint
options, PCR for accessing the PCR conditions.

Other settings functions: ConstraintOptions-class, ConstraintSettings-class, CoverageConstraints-class,
PCR_Conditions-class, PCR, conOptions, constraintLimits, constraints, cvg_constraints,
read_settings

Examples

Load a settings object

filename <- system.file("extdata”, "settings”,
"C_Tagq_PCR_high_stringency.xml”, package = "openPrimeR")

settings <- read_settings(filename)

Modify the constraints

constraints(settings)$gc_clamp["min"] <- @

Modify the constraint limits for designing primers

constraintLimits(settings)$gc_clamp["max"] <- 6

Modify the coverage constraints

cvg_constraints(settings)$primer_efficiency["min"] <- 0.001

Modify the PCR conditions

PCR(settings)$Na_concentration <- 0.0001

Modify the constraint options

conOptions(settings)$allowed_mismatches <- @

design_primers Design of Multiplex PCR Primers.

Description

Designs a primer set maximizing the number of covered templates using the smallest possible num-
ber of primers. The algorithm tries to ensure that the designed set of primers achieves a coverage
ratio not lower than required.cvg. To this end, the constraints for designing primers may be
relaxed.

Usage

design_primers(template.df, mode.directionality = c("both”, "fw", "rev"),
settings, init.algo = c("naive”, "tree"), opti.algo = c("Greedy”, "ILP"),
required.cvg = 1, timeout = Inf, max.degen = 16, conservation = 1,
sample.name = NULL, cur.results.loc = NULL, primer.df = NULL,
updateProgress = NULL)

Arguments

template.df A Templates object containing the template sequences and target regions for
designing primers.

mode.directionality
The template strand for which primers shall be designed. Primers can be de-
signed either for forward strands ("fw"), for reverse strands ("rev"), or for both
strands ("both"). The default setting is "both".

design_primers 25

settings A DesignSettings object specifying the constraint settings for filtering and
optimization.
init.algo The algorithm to be used for initializing primers. If init.algo is "naive", then

primers are constructed from substrings of the input template sequences. If
init.algo is "tree", phylogenetic trees are used to form degenerate primers
whose degeneracy is bounded by max.degen. This option requires an installa-
tion of MAFFT (see notes). The default init.algo is "naive".

opti.algo The algorithm to be used for solving the primer set covering problem. If opti.algo
is "Greedy" a greedy algorithm is used to solve the set cover problem. If opti.algo
is "ILP" an integer linear programming formulation is used. The default opti.algo
is "Greedy".

required.cvg The desired ratio of of covered template sequences. If the target coverage ratio
cannot be reached, the constraint settings are relaxed according to the the con-

straint limits in order to reach the target coverage. The default required. cvgis
set to 1, indicating that 100% of the templates are to be covered.

timeout Timeout in seconds. Only applicable when opti.algo is "ILP". The default is
Inf, which does not limit the runtime.

max.degen The maximal degeneracy of primer candidates. This setting is particularly rel-
evant when init.algo is set to "tree". The default setting is 16, which means
that at most 4 maximally degenerate positions are allowed per primer.

conservation Restrict the percentile of considered regions according to their conservation.
Only applicable for the tree-based primer initialization. At the its default of 1,
all available binding regions are considered.

sample.name An identifier for the primer design task. The default setting is NULL, which
means that the run identifier provided in template.df is used.

cur.results.loc
Directory for storing the results of the primer design procedure. The default
setting is NULL such that no output is stored.

primer.df An optional Primers object. If an evaluated primer.df is provided, the primer
design procedure only optimizes primer.df and does not perform the initializa-
tion and filtering steps. The default is NULL such that primers are initialized and
filtered from scratch.

updateProgress Shiny progress callback function. The default is NULL such that no progress is
logged.

Value

A list with the following fields:

opti: A Primers object providing the designed primer set.

used_constraints: A list with DesignSettings objects for each primer direction providing the
(possibly relaxed) constraints used for designing the optimal primers.

all_results: A list containing objects of class Primers. Each list entry corresponds to an optimal
primer set for a given melting temperature.

all_used_constraints: Alistcontaining DesignSettings object for each optimized setin all_results.

filtered: A list with data providing information on the results of the filtering procedure.

26 design_primers

1. Initialization

The primer design algorithm consists of three steps: primer initialization, filtering, and optimiza-
tion. The method for initializing a set of candidate primers is determined via init.algo. If
init.algo is set to naive, primers are created by extracting substrings from all input template
sequences. If init.algo is set to tree, degenerate primers are created by merging similar sub-
sequences by forming their consensus sequence up to a degeneracy of at most max.degen. The
tree-based initialization is recommended for related sequences.

2. Filtering

The candidate primer set is filtered according to the constraints specified in the settings object.
In some cases, it is necessary to relax the constraints in order to reach the desired required.cvg.
In these cases, primers that fail the input constraints may be selected. If you would like to skip the
initialization and filtering stages, you can provide an evaluated Primers object via primer.df.

3. Optimization

Optimizing a primer set entails finding the smallest subset of primers maximizing the coverage,
which is done by solving the set cover problem. If melting temperature differences are a constraint,
the optimization procedure automatically samples ranges of melting temperatures to find optimal
sets for all possible temperatures. You can select the used optimization algorithm via optia.algo,
where you can set "Greedy" for a greedy algorithm or "ILP for an integer linear program formulation
(ILP). While the worst-case runtime of the greedy algorithm is shorter than the worst-case runtime
of the ILP, the greedy solution may yield larger primer sets than the ILP solution.

Note

Some constraints specified in the settings object can only be computed if additional software is
installed, please see the documentation of DesignSettings for an overview of all possible set-
tings and the ConstraintSettings documentation for an overview of all possible constraints. Us-
age of init.algo = "tree" requires an installation of the multiple alignment program MAFFT
(http://mafft.cbrc.jp/alignment/software/).

See Also

Other primer functions: Primers-class, check_constraints, check_restriction_sites, create_report,
filter_primers, get_initial_primers, primer_significance, score_degen,write_primers

Examples

Define PCR settings and primer criteria
data(Ippolito)
constraints(settings)$primer_length <- c("min” = 18, "max" = 18)
Design only forward primers using a greedy algorithm
optimal.primers.greedy <- design_primers(template.df[1:2,], "both"”, settings, init.algo = "naive")
Usage of the tree-based initialization strategy (requires MAFFT)
Not run:
out.dir <- tempdir()
optimal.primers.tree <- design_primers(template.df[1:2,], "both”, settings,
init.algo = "tree"”, opti.algo = "ILP",
max.degen = 16,
cur.results.loc = out.dir)

End(Not run)

filter_primers 27

filter_primers Filter a Set of Primers.

Description

Filters a primer set according to the constraints specified via settings and active.constraints
such that all primers that do not fulfill the constraints are removed from primer.df.

Usage

filter_primers(primer.df, template.df, settings,
active.constraints = names(constraints(settings)))

Arguments
primer.df A Primers object containing the primers to be filtered.
template.df A Templates object with the template sequences that are to be covered by
primer.df.
settings A DesignSettings object specifying the parameters for filtering the primers.

active.constraints
The constraints that are to be used for filtering primers. By default, active.constraints
is set to NULL such that all active constraints are used.

Value

A Primers object containing only those primers fulfilling all specified constraints.

Note

Please note that some constraints can only be computed if additional software is installed, please
see DesignSettings for an overview.

See Also

Other primer functions: Primers-class, check_constraints, check_restriction_sites, create_report,
design_primers, get_initial_primers, primer_significance, score_degen,write_primers

Examples
data(Ippolito)
filename <- system.file("extdata”, "settings”,

"C_Taq_PCR_high_stringency.xml”, package = "openPrimeR")
settings <- read_settings(filename)
Only retain the primers fulfilling the GC clamp constraint:
filtered.df <- filter_primers(primer.df, template.df, settings,
active.constraints = c("gc_ratio"))

28 get_cvg_ratio

get_comparison_table Overview of Primer Set Properties.

Description

Creates an overview of the properties of multiple primer sets by providing the inter-quartile range
of primer properties in bracket notation.

Usage

get_comparison_table(template.data, primer.data, sample.name = NULL)

Arguments

template.data List with Template objects corresponding to primer.data.
primer.data List with evaluated Primers objects whose properties are to be summarized.

sample.name Either a single identifier or identifiers for every Templates objectin template.data.
By default, sample.name is NULL such that the Run annotations in the Templates
objects provided by template.data are used.

Value

A data frame summarizing the properties of each primer set.

Examples

data(Comparison)
tab <- get_comparison_table(template.datal[1:3], primer.datal[1:3], "IGH")

get_cvg_ratio Determination of the Ratio of Covered Templates.

Description

Determines the ratio of template sequences that are covered by the evaluated input primers. The

ratio is in the interval [0,1] where O indicates 0% coverage (no templates covered) and 1 indicates
100% coverage (all templates covered).

Usage

get_cvg_ratio(primers, template.df, allowed.mismatches = NULL,

cvg.definition = c("constrained”, "basic"), mode.directionality = NULL,
as.char = FALSE)

get_cvg_stats 29

Arguments
primers A Primers object containing the primers for which the coverage should be eval-
uated.
template.df A Templates object containing the template sequences corresponding to primers.

allowed.mismatches
The number of allowed mismatches for determining the coverage of the tem-
plates. By default, allowed.mismatches is set to NULL such that all annotated
coverage events are considered.

cvg.definition Whether to output the coverage obtained from string matching ("basic") or the
expected coverage ("constrained"), which is constructed by applying the cover-
age constraints. By default, cvg.definition is set to "constrained".
mode.directionality
Ifmode.directionality is provided, the coverage of templates is computed for
a specific direction of primers. Either "fw" (forward coverage only), "rev" (re-
verse coverage only), or "both" for both directions. By default, mode.directionality
is NULL such that the directionality of the primers is determined automatically.

as.char Whether the coverage ratio should be outputted as a percentage-formatted char-
acter vector. By default, as. char is set to FALSE such that a numeric is returned.

Details

The manner in which the coverage ratio is evaluated depends on the directionality of the input
primers. If either only forward or reverse primers are inputted, the individual coverage of each
primer is used to determine the overall coverage. If, however, forward and reverse primers are
inputted at the same time, the coverage is defined by the intersection of binding events from both,
forward and reverse primers.

Value

By default, a numeric providing the expected primer coverage ratio. If as. char is TRUE, the output
is provided as a percentage-formatted character vector. The attributes no_covered, no_templates,
and covered_templates provide the number of covered templates, the total number of templates,
and the IDs of covered templates, respectively.

Examples

data(Ippolito)

cvg.ratio <- get_cvg_ratio(primer.df, template.df)

determine the identitity coverage ratio

cvg.ratio.@ <- get_cvg_ratio(primer.df, template.df, allowed.mismatches = @)

get_cvg_stats Coverage Ratios per Group of Templates.

Description

Retrieve statistics on covered templates, either for a single primer set or for multiple primer sets.

30

get_cvg_stats_primer

Usage

get_cvg_stats(primers, templates, for.viewing = FALSE,
total.percentages = FALSE, allowed.mismatches = Inf,

cvg.definition = c("constrained”, "basic"))
Arguments
primers To retrieve coverage statistics for a single primer set, please provide an object of

class Primers containing primers with evaluated coverage. To retrieve coverage
statistics for multiple primer sets, pelase provide a list with evaluated Primers
objects.

templates If primers is an object of class Primers, please provide an object of class
Templates containing the template sequences targeted by primers. If primers
is a list, templates should be a list of Template objects.

for.viewing Whether the table should be formatted to be human-readable. By default, for.viewing

is FALSE.

total.percentages
Whether group coverage percentages should be computed in relation to the total
number of template sequences or in relation to the number of templates belong-
ing to a specific group. By default, total.percentages is FALSE suc that the
percentages are group-specific.

allowed.mismatches
The maximal allowed number of mismatches. By default, allowed.mismatches
is set to Inf such that the number of mismatches is not restricted additionally.

cvg.definition If cvg.definition is set to "constrained", the statistics for the expected cover-
age (after applying the coverage constraints) are retrieved. If cvg.definition
is set to "basic", the coverage is determined solely by string matching (i.e. with-
out applying the coverage constraints). By default, cvg.definition is set to
"constrained".

Value

Data frame whose entries provide the coverage of templates belonging to a specific group.

Examples

Coverage statistics for a single primer set

data(Ippolito)

cvg.stats <- get_cvg_stats(primer.df, template.df)

Coverage statistics for multiple primer sets

data(Comparison)

cvg.stats.comp <- get_cvg_stats(primer.datal1:2], template.datal1:2])

get_cvg_stats_primer Statistics on the Number of Coverage Events per Primer.

Description

Creates a table summarizing the coverage events of each primer according to the number of mis-
matches between primers and templates.

get_initial_primers 31

Usage
get_cvg_stats_primer(primer.df, template.df, cvg.definition = c("constrained”,
"basic"))
Arguments
primer.df A Primers object with evaluated coverage providing the set of primers for which
the coverage statistics shall be computed.
template.df A Templates object providing the template sequences for which the primer cov-

erage has been computed.

cvg.definition If cvg.definition is setto "constrained", the statistics for the expected cover-
age (after applying the coverage constraints) are retrieved. If cvg.definition
is set to "basic", the coverage is determined solely by string matching (i.e. with-
out applying the coverage constraints). By default, cvg.definition is set to
"constrained".

Details

Entries in numeric table columns indicate the percentage of coverage events occurring with a certain
number of mismatches. For example column 3 provides all coverage events with exactly three
mismatches between primers and templates. The column Group_Coverage provides a listing of the
percentage of covered templates per group.

Value

A data frame listing the number of binding events broken down according to the number of expected
mismatches between primers and templates.

Examples

data(Ippolito)
primer.cvg.stats <- get_cvg_stats_primer(primer.df, template.df)

get_initial_primers Creation of Candidate Primers.

Description

Creates a set of primer candidates based on the input template sequences. This set of primers can
be used to create custom primer design algorithms.

Usage
get_initial_primers(sample, template.df, primer.lengths,
mode.directionality = c("fw", "rev"),
allowed.region.definition = c("within”, "any"”), init.algo = c("naive”,

NULL)

"tree"), max.degen = 16, conservation = 1, updateProgress

32 get_initial primers

Arguments
sample Character vector providing an identifier for the templates.
template.df An object of class Templates providing the template sequences for which an

initial set of primers is constructed.

primer.lengths Numeric interval providing the minimal and maximal allowed lengths of gener-
ated primers.

mode.directionality
Character vector giving the direction of primers to be created. Either "fw" to
create forward primers or "rev" to create reverse primers. The default is "fw".

allowed.region.definition
A character vector providing the definition of region where primers are to be
constructed. If allowed.region.definition is "within", constructed primers
lie within the allowed binding region. If allowed.region.definitionis "any",
primers overlap with the allowed binding region. The default is "within".

init.algo Algorithm for initializing primers. If you set init.algo to "tree", then initial
primers will be generated by forming degenerate consensus sequences using a
tree-based approach. This option requires MAFFT for multiple alignments (see
notes). If init.algo is set to "naive", initial primers are generated by extracting
substrings from the template target regions.

max.degen A numeric providing the maximal allowed degeneration of created primers.

conservation The percentile of top-conserved template regions to consider. The value of
conservation should be in the range[0,1]. If the conservation is set to 1
(the default), all regions are considered.

updateProgress A Shiny progress object; by default this is set to NULL such that no callback is
used.

Value

A data frame with candidate primers for optimization.

Note

If you want to set init.algo to "tree", please install MAFFT (http://mafft.cbrc.jp/alignment/software/)
on your computer.

See Also

Other primer functions: Primers-class, check_constraints, check_restriction_sites, create_report,
design_primers, filter_primers, primer_significance, score_degen, write_primers

Examples

data(Ippolito)

Naive primer initialization

init.primers <- get_initial_primers("InitialPrimers”, template.df,
c(18,18), "fw", init.algo = "naive")

Tree-based primer initialization (requires MAFFT)

Not run:

init.primers <- get_initial_primers("InitialPrimers”, template.df,
c(18,18), "fw", init.algo = "tree")

End(Not run)

Ippolito 33

Ippolito Evaluated Primer Data from Ippolito et al.

Description

Primer and template data for IGHV from Ippolito et al.

Usage

data(Ippolito)

Format

primer.df provides a Primers object containing the evaluated set of primers from Tiller et al.
template.df provides a Templates object containing functional, human IGHV templates for, and
settings provides a DesignSettings object providing the used analysis settings.

References

Ippolito GC, Hoi KH, Reddy ST, Carroll SM, Ge X, Rogosch T, Zemlin M, Shultz LD, Ellington
AD, VanDenBerg CL, Georgiou G. 2012. Antibody Repertoires in Humanized NOD-scid-IL2R
gamma null Mice and Human B Cells Reveals Human-Like Diversification and Tolerance Check-
points in the Mouse. PLoS One 7:€35497.

Examples

data(Ippolito)

Explore the data:
primer.df
template.df
constraints(settings)

parallel_setup Setup the Parallel Backend.

Description

Registers the specified number of cores with the parallel backend.

Usage
parallel_setup(cores = NULL)

Arguments
cores A numeric providing the number of cores to use. The default is NULL such that
half the number of available cores are used.
Value

Returns NULL

34 PCR

Examples

Not run:
Use two cores for parallel processing:
parallel_setup(2)

End(Not run)

PCR Getter/Setter for the PCR Conditions.

Description

Gets the PCR conditions that are defined in the provided DesignSettings object x.

Sets the PCR conditions that are defined in the provided DesignSettings object x.

Usage

PCR(x)

S4 method for signature 'DesignSettings'
PCR(x)

PCR(x) <- value

S4 replacement method for signature 'DesignSettings'
PCR(x) <- value

Arguments
X A DesignSettings object.
value A named list providing PCR conditions The permissible fields of the list and
their types are documented in the PCR_Conditions class.
Value

Gets the list of PCR conditions.

Sets the list of PCR conditions.

See Also

Other settings functions: ConstraintOptions-class, ConstraintSettings-class, CoverageConstraints-class,
DesignSettings-class, PCR_Conditions-class, conOptions, constraintlLimits, constraints,
cvg_constraints, read_settings

PCR_Conditions-class 35

Examples

Load some settings

data(Ippolito)

View the active PCR conditions

PCR(settings)

Evaluate primers with a fixed annealing temperature
PCR(settings)$annealing_temperature <- 50 # celsius
View available PCR conditions

settings

PCR_Conditions-class Class for PCR Conditions.

Description

The PCR_Conditions class encapsulates the PCR conditions for the computation of primer proper-
ties.

Value

A PCR_Conditions object.

Slots

status Named boolean vector indicating which of the possible options are active (TRUE) and which
are not (FALSE).

settings Named list with constraint options. The following fields are possible:
use_taqg_polymerase: A logical identifying whether you are performing PCR with a Taq
polymerase (TRUE) or not (FALSE).

annealing_temp: The annealing temperature in Celsius that is to be used for evaluating the
constraints defined in the ConstraintSettings object. If the annealing temperature field
is not provided, a suitable annealing temperature is automatically computed using a rule
of thumb (i.e. subtracting 5 from the melting temperature).

Na_concentration: The molar concentration of monovalent sodium ions.
Mg_concentration: The molar concentration of divalent magnesium ions.
K_concentration: The molar concentration of monovalent potassium ions.

Tris_concentration: The molar concentration of the Tris(hydroxymethyl)-aminomethan
buffer. Note that this value is the buffer concentration. To determine corresponding Tris
ion concentration, the value of the buffer concentration is halved.

primer_concentration: The molar concentration of the PCR primers.
template_concentration: The molar concentration of the PCR templates.

See Also

Other settings functions: ConstraintOptions-class, ConstraintSettings-class, CoverageConstraints-class,
DesignSettings-class, PCR, conOptions, constraintLimits, constraints, cvg_constraints,
read_settings

36 plot_conservation

Examples

Initialize a new 'PCR_Conditions' object:

PCR.conditions <- new("PCR_Conditions")

Retrieving the PCR conditions from a 'DesignSettings' object:
data(Ippolito) # loads a 'DesignSettings' object into 'settings'
PCR(settings)

Modifying the PCR conditions:

PCR(settings)$use_tag_polymerase <- FALSE

plot_conservation Plot of Template Sequence Conservation.

Description

Plots the template sequence conservation (range [0,1]) according to the Shannon entropy of the

sequences.
Usage
plot_conservation(entropy.df, alignments, template.df, gap.char = "-")
Arguments
entropy.df A data frame with entropies. Each row gives the entropies of a group of related
template sequences for all columns of the alignment.
alignments A list with DNABin alignment objects corresponding to the groups (rows) in the
alignment.
template.df The Templates object for which the conservation has been determined.
gap.char The gap char in the alignments. By default, gap.char is set to "-".
Value

A plot showing the degree of sequence conservation in the templates.

Note

Computing the conservation scores for the plot requires the MAFFT software for multiple align-
ments (http://mafft.cbrc.jp/alignment/software/).

Examples

Not run:

data(Ippolito)

Select binding regions for every group of templates and plot:

template.df <- select_regions_by_conservation(template.df, win.len = 30)
plot_conservation(attr(template.df, "entropies"), attr(template.df, "alignments"”), template.df)
Select binding regions for all templates and plot:

data(Ippolito)

template.df <- select_regions_by_conservation(template.df, by.group = FALSE)
plot_conservation(attr(template.df, "entropies”), attr(template.df, "alignments”), template.df)

End(Not run)

plot_constraint 37

plot_constraint Plot of Constraint Values.

Description

Shows the distribution of the primer properties. The current constraint settings are indicated with
dashed lines in the plot.

Usage

plot_constraint(primers, settings,
active.constraints = names(constraints(settings)), ...)

Arguments

primers Either an evaluated object of class Primers or a list of Primers objects.

settings A DesignSettings object containing the settings for the constraints to be plot-
ted.

active.constraints

Identifiers of constraints to be plotted. If active.constraints is not provided,
the plotting method automatically plots all constraints defined in settings that
are annotated in primers.

highlight.set (a character vector identifying the set that is to be highlighted
when primers is a list).

Value

A plot showing the distribution of primer properties.

See Also

Other constraint visualizations: plot_constraint_deviation, plot_constraint_fulfillment

Examples

Plot histogram of constraints for a single primer set

data(Ippolito)

plot_constraint(primer.df, settings, active.constraints = c("gc_clamp”, "gc_ratio"))
Compare constraints across multiple primer sets

data(Comparison)

plot_constraint(primer.datal[1:3], settings, active.constraints = c("gc_clamp”, "gc_ratio”))

38 plot_constraint_deviation

plot_constraint_deviation
Plot of Constraint Deviations.

Description

Shows the deviation of primer properties from the target ranges.

Usage

plot_constraint_deviation(primer.data, settings,
active.constraints = names(constraints(settings)), ...)

Arguments

primer.data An evaluated object of class Primers or a list with Primers objects.

settings A DesignSettings object containing the target ranges for the primer properties.

active.constraints

Constraint identifiers to be plotted. By default, all constraints found in settings
are plotted.

deviation.per.primer (aboolean indicating whether the deviations should be
plotted per primer rather than per constraint if primer.data is a list)

Details

Deviations are computed in the following way. Let the minimum and maximum allowed constraint
values be given by the interval [s, e] and the observed value be p. Then, if p < s, we output —p/|s|,
if p > e we output p/|e|, and otherwise, i.e. if s <= p <= e, we output 0.

Value

A plot showing the deviations of the primer properties from the targets.

See Also

Other constraint visualizations: plot_constraint_fulfillment, plot_constraint

Examples

Deviations for a single primer set
data(Ippolito)
plot_constraint_deviation(primer.df, settings)
Deviations for multiple primer sets
data(Comparison)
plot_constraint_deviation(primer.data, settings)

plot_constraint_fulfillment 39

plot_constraint_fulfillment
Constraint Fulfillment Plot.

Description

Visualizes which which primers pass the constraint settings and which primers break the constraints.

Usage

plot_constraint_fulfillment(primers, settings,
active.constraints = names(constraints(settings)), plot.p.vals = FALSE,

)
Arguments
primers Either an object of class Primers or a list of such objects.
settings A DesignSettings object containing the constraints to be evaluated.

active.constraints
The identifiers of constraints to be plotted for fulfillment. By default active.constraints
is set according to all active constarints defined in settings.

plot.p.vals An optional logical argument indicating whether p-values computed via primer_significance
should be annotated in the plot. The default is FALSE.

The optional arguments ncol (a numeric indicating the number of facet columns
if primersis alist), highlight.set (the identifier of the primer set to be high-
lighted if primers is a list)

Value

A plot indicating the constraints that fulfilled by the input primers.

See Also

Other constraint visualizations: plot_constraint_deviation, plot_constraint

Examples

Plot fulfillment for a single primer set:
data(Ippolito)

plot_constraint_fulfillment(primer.df, settings)

Plot fulfillment for multiple primer sets:
data(Comparison)
plot_constraint_fulfillment(primer.datal[1:5], settings)

40 plot_cvg_vs_set_size

plot_cvg_constraints Plot of Coverage Constraints.

Description

Plots the distribution of the coverage constraint values.

Usage
plot_cvg_constraints(primers, settings,
active.constraints = names(cvg_constraints(settings)), ...)
Arguments
primers A Primers object or a list with objects of class Primers.
settings A DesignSettings object.

active.constraints

Names of coverage constraints to be plotted. By default, all active coverage
constraints in settings are plotted.

highlight.set (a character vector identifying the set that is to be highlighted
when primers is a list).

Value

A plot showing the distribution of the coverage constraint values.

Examples

Plot coverage constraints of a single primer set
data(Ippolito)

plot_cvg_constraints(primer.df, settings)

Plot coverage constraints for mulitple primer sets
data(Comparison)
plot_cvg_constraints(primer.datal[1:2], settings)

plot_cvg_vs_set_size Plot of Primer Coverage Ratio vs Set Size.

Description

Plots the coverage ratios of the input primer sets against the size of the sets.

Usage

plot_cvg_vs_set_size(primer.data, template.data, show.labels = TRUE,
highlight.set = NULL)

plot_penalty_vs_set_size 41

Arguments

primer.data List with objects of class Primers containing the primer sets that are to be com-
pared.

template.data List with objects of class Templates containing the templates corresponding to
primer.data.

show. labels Whether the identifiers of the primer sets should be annotated in the plot. The
default is TRUE.

highlight.set A character vector providing the identifiers of primer sets to highlight. By de-
fault, highlight. set is NULL such that no highlighting takes place.

Value

A plot of coverage vs set size.

See Also

Other comparison visualizations: plot_penalty_vs_set_size

Examples

data(Comparison)
plot_cvg_vs_set_size(primer.data, template.data)

plot_penalty_vs_set_size
Plot of Primer Penalties vs Set Size.

Description

Plots the penalties of the input primer sets against the number of primers contained in each set. The
penalties are computed using score_primers where more information is provided on how to set
alpha.

Usage

plot_penalty_vs_set_size(primer.data, settings,
active.constraints = names(constraints(settings)), alpha = 0)

Arguments
primer.data List with objects of class Primers.
settings An object of class DesignSettings.

active.constraints

A character vector with constraint identifiers to be considered for generating the
plot.

alpha A numeric in the range [0,1] defining the trade-off between the maximal devia-
tion of a constraint (large codealpha) and all constraint deviations (large alpha).
By default, alpha is set to O such that the absolute deviation across all con-
straints is considered.

42 plot_primer

Value

A plot showing the association between primer penalties and the size of the primer sets.

See Also

Other comparison visualizations: plot_cvg_vs_set_size

Examples

data(Comparison)
plot_penalty_vs_set_size(primer.data, settings)

plot_primer Primer View Plot.

Description

Visualizes the binding positions of every primer relative to the target binding region in the corre-
sponding template sequences.

Usage
plot_primer(primer.df, template.df, identifier = NULL, relation = c("fw",
"rev"), region.names = c("Binding region"”, "Amplification region"))
Arguments
primer.df An object of class Primers containing primers with evaluated primer coverage.
template.df An object of class Templates with template sequences corresponding to primer.df.
identifier Identifiers of primers that are to be considered. If identifier is set to NULL

(the default), all primers are considered.

relation Compute binding positions relative to forward ("fw") or reverse ("rev") binding
regions. The default is "fw".

region.names Character vector of length 2 providing the names of the binding and amplifica-
tion region.
Value

A plot of primer binding sites in the templates.

See Also
Other coverage visualizations: plot_primer_binding_regions, plot_primer_cvg, plot_primer_subsets,
plot_template_cvg

Examples

data(Ippolito)
plot_primer(primer.df[1,], template.df[1:30,]1)

plot_primer_binding_regions 43

plot_primer_binding_regions
Plot of Primer Binding Regions.

Description

Visualizes the number of binding events of the input primers with respect to the allowed binding
regions in the templates.

Usage
plot_primer_binding_regions(primers, templates, direction = c("both”, "fw",
"rev"), group = NULL, relation = c("fw", "rev"),
region.names = c("Binding region”, "Amplification region"), ...)
Arguments
primers Either a single Primers object or a list with Primers objects.
templates If primers is a primers object, please supply a Templates object. If primers
is a list, please supply a corresponding list of Templates objects.
direction The directionality of primers to be plotted. This can either be "both" to plot
primers of both directions (the default), "fw" to plot only forward primers, or
"rev" to plot only reverse primers.
group Optional identifiers of template groups for which binding events should be de-
termined. By default, group is set to NULL such that all templates are considered.
relation An optional character vector specifying whether binding region data shall be

plotted relative to the forward (fw) or reverse (rev) target binding regions.

region.names An optional, two-component character vector specifying the identifiers for the
primer binding region and the amplified region.

highlight.set (the identifiers of primer sets to be highlighted, if primers is a
list)
Value

A plot for primer binding region comparison.

See Also

Other coverage visualizations: plot_primer_cvg, plot_primer_subsets, plot_primer,plot_template_cvg

Examples

Primer binding regions of a single primer set

data(Ippolito)

plot_primer_binding_regions(primer.df, template.df)

Primer binding regions of multiple primer sets

data(Comparison)

plot_primer_binding_regions(primer.datal1:3], template.datal1:3])

44 plot_primer_cvg

plot_primer_cvg Plot of Primer Coverage.

Description

Shows which groups of templates are covered by individual primers.

Usage
plot_primer_cvg(primers, templates, per.mismatch = FALSE, ...)

Arguments
primers An object of class Primers or a list with with objects of class Primers.
templates If primers is an object of class Primers, please supply a Templates object. If

primers is a list, please supply a corresponding list with Templates objects.

per.mismatch A logical identifiying whether the coverage should be plotted for individual set-
tings of allowed mismatches. By default per.mismatch is set to FALSE such
that the overall coverage is plotted.

groups (the identifiers of template groups to be excluded from the plot if primers
is a single primer set)

Value

A plot showing the coverage of individual primers.

See Also

Other coverage visualizations: plot_primer_binding_regions, plot_primer_subsets, plot_primer,
plot_template_cvg

Examples

Plot expected coverage per primer

data(Ippolito)

plot_primer_cvg(primer.df, template.df)

Plot coverage stratified by allowed mismatches:
plot_primer_cvg(primer.df, template.df, per.mismatch = TRUE)
Plot coverage of multiple primer sets

data(Comparison)

plot_primer_cvg(primer.datal[1:3], template.data[1:3])

plot_primer_subsets 45

plot_primer_subsets Plot of Primer Subset Coverage.

Description

Visualizes the coverage of optimized primer subsets.

Usage

plot_primer_subsets(primer.subsets, template.df, required.cvg = 1)

Arguments

primer.subsets A list with optimal primer subsets, each of class Primers. The k-th list entry
should correspond to an object of class Primers representing the primer subset
of size k whose coverage ratio is the largest among all possible subsets of size k.

template.df An object of class Templates containing the template sequences corresponding
to the primers specified in primer.subsets.

required.cvg The required coverage ratio. The default is 100%; this value is plotted as a
horizontal line.

Details

The input for the primer.subsets argument can be computed using subset_primer_set. The
line plot indicates the ratio of covered templates when considering all primers in a primer set of
a given size. The bar plots indicate the coverage ratios of individual primers in a set. The target
coverage ratio is indicated by a horizontal line. Bars exceeding the target ratio possibly indicate the
existence of redundant coverage events.

Value

Plot of the coverages of the primer subsets in primer.subsets.

See Also

Other coverage visualizations: plot_primer_binding_regions, plot_primer_cvg, plot_primer,
plot_template_cvg

Examples

data(Ippolito)

primer.subsets <- subset_primer_set(primer.df, template.df)
Plot the coverage of optimal primer subsets
plot_primer_subsets(primer.subsets, template.df)

46 plot_template_cvg

plot_template_cvg Bar Plot of Template Coverage.

Description

Creates a bar plot showing the coverage for every group of template sequences.

Usage
plot_template_cvg(primers, templates, per.mismatch = FALSE, ...)
Arguments
primers Either a Primers object with evaluated primer coverage or a list containing
Primers objects.
templates If primers is a Primers object, templates should be a Templates object. If

primers is a list, then templates should be a list of Templates objects.

per.mismatch A logical specifying whether the visualization should be stratified according to
the allowed number of mismatches. By default, per.mismatch is set to FALSE
such that the overall coverage is plotted.

Optional arguments groups (a character vector of groups to be plotted when
primers is a single primer set), highlight.set (the identifier of a primer set
to be highlighted when primers is a list)

Value

A plot showing the number of covered template sequences.

See Also

Other coverage visualizations: plot_primer_binding_regions, plot_primer_cvg, plot_primer_subsets,
plot_primer

Examples

Visualize the template coverage of a single primer set

data(Ippolito)

plot_template_cvg(primer.df, template.df)

Stratify by allowed mismatches:

plot_template_cvg(primer.df, template.df, per.mismatch = TRUE)

Compare the coverage of multiple primer sets

data(Comparison)

plot_template_cvg(primer.datal[1:3], template.datal[1:3])

Stratify by allowed mismatches:

plot_template_cvg(primer.datal[1:3], template.datal[1:3], per.mismatch = TRUE)

Primers-class 47

Primers-class The Primers Class.

Description

The Primers class encapsulates a data frame representing a set of primers. Objects of this class
store all properties associated with a set of primers, for example the results from evaluating the
properties of a primer set or from determining its coverage.

Usage

Primers(...)

Arguments

A data frame fulfilling the structural requirements for initializing a Primers
object.

Value

A Primers object, an instance of a data frame.

Basic columns

In the following you can find a description of the most important columns that can be found in
objects of class Primers. Note that angular brackets indicate the existence of multiple possibili-
ties. The following columns are present when a set of primers is loaded from a FASTA file using
read_primers:

ID The identifiers of the primers.

Identifier The internal identifiers of the primers.

Forward The sequences of forward primers.

Reverse The sequences of reverse primers.

primer_length<fw|rev> The lengths of forward and reverse primer sequences, respectively.
Direction Either 'fw’ for forward primers, 'rev’ for reverse primers, or "both’ for a primer pair.
Degeneracy_<fw|rev> The degeneracy (ambiguity) of forward and reverse primers, respectively.

Run An identifier describing the primer set.

Coverage-related columns

The following columns are only available after primer coverage has been computed, that is af-

ter check_constraints has been called with the active primer_coverage constraint. Computed

coverage values relating solely to string matching are indicated by the prefix Basic_, while columns

without this prefix relate to the coverage after applying the constraints formulated via CoverageConstraints.
Information on off-target coverage events are indicated by the Of f _ prefix, while on-target coverage

events do not carry this prefix.

primer_coverage The number of templates that are covered by the primers. Note that if a primer
set contains primers of both directions, a template is only considered covered if it is covered
by primers of both directions.

48 Primers-class

Coverage_Ratio The ratio of templates that are covered by the primers.

Binding_Position_Start_<fw|rev> The upstream position in the templates where forward and
reverse primers respectively bind.

Binding_Position_End_<fw|rev> The downstream position in the templates where forward and
reverse primers respectively bind.

Relative_<Forward|Reverse>_Binding_Position_<Start|End>_<fw|rev> The binding upstream
(Start) or downstream (End) positions of the primers relative to the forward (Forward) or re-
verse (Reverse) binding regions, either for forward (fw) or reverse primers (rev).

Binding_Region_Allowed Whether a coverage event occurred in the target binding region or not.
If the allowed off-target ratio was set to 0 only coverage events within the the target region are
reported.

Nbr_of_mismatches_<fw|rev> The number of mismatches of forward and reverse primer cover-
age events, respectively.

Mismatch_pos_<fw|rev> The position of mismatches for forward and reverse coverage events,
respectively. Mismatch positions are reported relative to the 3’ end, that is, position 1 indicates
a mismatch in the last base of a primer.

primer_specificity The specificity of a primer as determined by its ratio of off-target binding
events.

Constraint-related columns

Each constraint that is considered when calling check_constraints gives rise to at least one col-
umn in the provided Primers object. Due to the large number of possible constraints, we will limit
our description to the gc_clamp constraint. Once the GC clamp property has been computed, the
gc_clamp_fw column contains the length of the GC clamp for forward primers and gc_clamp_rev
the corresponding length for reverse primers. Whether the desired extent of the GC clamp was ob-
tained by a primer is indicated by the EVAL_gc_clamp column. It contains TRUE when the GC clamp
constraint was fulfilled and FALSE when it was broken. To identify whether all required constraints
were fulfilled by a primer, the constraints_passed column can be used. It contains TRUE if all
active.constraints used by check_constraints were fulfilled and FALSE otherwise.

See Also

read_primers for loading a primer set, score_degen for scoring the degeneracy of a primer,
primer_significance for determining the significance of a primer set, get_initial_primers for

computing an initial set of primers, design_primers for designing primer sets, check_constraints

for determining the properties of a primer set, filter_primers for filtering a primer set, check_restriction_sites
to search for restriction sites, get_cvg_ratio to determine the coverage ratio of a primer set,

create_report to create a PDF report for a primer set.

Other primer functions: check_constraints, check_restriction_sites, create_report,design_primers,
filter_primers, get_initial_primers, primer_significance, score_degen,write_primers

Examples

primer.location <- system.file("extdata”, "IMGT_data”, "primers"”, "IGHV",
"Ippolito2012.fasta”, package = "openPrimeR")
primer.df <- read_primers(primer.location, "_fw", "_rev")

primer_significance 49

primer_significance Significance of a Primer Set.

Description
Uses Fisher’s exact test to determine the significance of a primer set according to its ratio of fulfilled
constraints on the primer properties.

Usage

primer_significance(primer.df, set.name = NULL, active.constraints = NULL)

Arguments
primer.df An object of class Primers for which the significance of physicochemical prop-
erties shall be determined.
set.name An identifier for the input primers. If NULL, the run identifier is used.

active.constraints

Identifiers of the constraints contained in primer.df to consider. By default
(NULL) all constraints available in primer.df are considered for determining
the significance.

Details

The significance is computed by comparing the total count of fulfilled and failed constraints with
the corresponding counts of primer sets from the literature. Significant p-values indicate primer sets
whose rate of constraint fulfillment is higher compared to the reference sets.

Value

The p-value of the primer set according to Fisher’s exact test. The returned value has the following
attributes:

test The results of the significance test

tab The confusion matrix for Fisher’s exact test

constraints The names of the considered constraints

See Also

Other primer functions: Primers-class, check_constraints, check_restriction_sites, create_report,
design_primers, filter_primers, get_initial_primers, score_degen, write_primers

Examples

data(Ippolito)

p.data <- primer_significance(primer.df, "Ippolito”)
attr(p.data,”tab"”) # the confusion matrix

attr(p.data, "test"”) # results from Fisher's test

attr(p.data, "constraints”) # considered constraints for the test

50 read_primers

read_primers Input of Primers.

Description

Reads one or multiple input files with primer sequences. The input can either be in FASTA or in
CSV format.

Usage

n

read_primers(primer.location, fw.id = "_fw"”, rev.id = "_rev",
merge.ambig = c("none”, "merge"”, "unmerge"), max.degen = 16,
template.df = NULL, adapter.action = c("warn”, "rm"),

sample.name = NULL, updateProgress = NULL)

Arguments

primer.location
Path to a single or multiple primer FASTA or CSV files.

fw.id For FASTA input, the identifier for forward primers in the FASTA headers.
rev.id For FASTA input, the identifier for reverse primers in the FASTA headers.
merge.ambig Indicates whether similar primers should be merged ("merge") using IUPAC

ambiguity codes or whether primers should be disambiguated ("unmerge"). By
default merge.ambig is set to "none", leaving primers as they are.

max .degen A scalar numeric providing the maximum allowed degeneracy for merging primers
if merge.ambig is set to "merge". Degeneracy is defined by the number of dis-
ambiguated sequences that are represented by a degenerate primer.

template.df An object of class Templates. If template.df is provided the primers are
checked for restriction sites upon input. By default template.df is NULL such
that the primers are not checked for restriction sites.

adapter.action The action to be performed when template.df is provided for identifying adapter
sequences. Either "warn" to issue warning about adapter sequences or "rm" to
remove identified adapter sequences. The default is "warn".

sample.name An identifier for the input primers.

updateProgress A Shiny progress callback function. This is NULL by default such that no progress
is tracked.

Details

The input arguments fw.id, rev.id, merge.ambig, and max.degen are only used for loading
primers from a FASTA file. If you want to load a FASTA file, please ensure that fw.id and rev. id
are set according to the keywords indicating the primer directionalities in the FASTA file. When
loading a CSV file, the format of the file should adhere to the structure defined by the Primers
class. You can easily store a Primers objects as a CSV file using the write_primers function.

Value

An object of class Primers for a single primer.location or a list of such objects for multiple
locations.

read_settings 51

Examples

primer.fasta <- system.file("extdata”, "IMGT_data”, "primers"”, "IGHV",
"Ippolito2012.fasta”, package = "openPrimeR")

primer.df <- read_primers(primer.fasta, "_fw", "_rev")
Read multiple FASTA files
fasta.files <- list.files(system.file("extdata”, "IMGT_data"”, "primers”,

"IGHV", package = "openPrimeR"), pattern = "*\\.fasta",

full.names = TRUE)[1:3]
primer.data <- read_primers(fasta.files)
Read primers from a CSV file
primer.csv <- system.file("extdata”, "IMGT_data", "comparison”,

"primer_sets”, "IGL", "IGL_openPrimeR2017.csv"”, package = "openPrimeR")
primer.df <- read_primers(primer.csv)
Read multiple primer CSV files
primer.files <- list.files(path = system.file("extdata”, "IMGT_data”, "comparison”,
"primer_sets"”, "IGH", package = "openPrimeR"),
pattern = "x*\\.csv"”, full.names = TRUE)[1:3]

primer.data <- read_primers(primer.files)
Read a mixture of FASTA/CSV files:
mixed.primers <- c(primer.fasta, primer.csv)
primer.data <- read_primers(mixed.primers)

read_settings Loading of Analysis Settings.

Description

Loads primer analysis settings from an XML file.

Usage
read_settings(filename = list.files(system.file("extdata”, "settings", package
= "openPrimeR"), pattern = "x.xml"”, full.names = TRUE), frontend = FALSE)
Arguments
filename Path to a valid XML file containing the primer analysis settings. By default,
filename is set to all settings that are shipped with openPrimeR and the lexico-
graphically first file is loaded.
frontend Indicates whether settings shall be loaded for the Shiny frontend. In this case
no unit conversions for the PCR settings are performed. The default setting is
FALSE such that the correct units are used.
Details

If filename is not provided, a default XMI settings file is loaded. Please review the function’s
examples to learn more about the default settings. If you want to load custom settings, you can
store a modified DesignSettings object as an XML file using write_settings.

Value

An object of class DesignSettings.

52 read_templates

See Also

Other settings functions: ConstraintOptions-class, ConstraintSettings-class, CoverageConstraints-class,
DesignSettings-class, PCR_Conditions-class, PCR, conOptions, constraintLimits, constraints,
cvg_constraints

Examples

Select the available settings
#' the available supplied settings by calling
available.settings <- list.files(
system.file("extdata"”, "settings", package = "openPrimeR"),
pattern = "%.xml"”, full.names = TRUE)
Select one of the settings and load them
filename <- available.settings[1]
settings <- read_settings(filename)
Modify, store, and read a settings object:
constraints(settings)$gc_clamp <- c("min" = @, "max" = 5)
out.file <- tempfile("my_settings”, fileext = ".xml")
write_settings(settings, out.file)
my_settings <- read_settings(out.file)

read_templates Input of Template Sequences.

Description

Read one or multiple files with template sequences in FASTA or CSV format.

Usage

read_templates(template.file, hdr.structure = NULL, delim = NULL,
id.column = NULL, rm.keywords = NULL, remove.duplicates = FALSE,
fw.region = c(1, 30), rev.region = c(1, 30), gap.character = "-",
run = NULL)

Arguments

template.file Path to one or multiple FASTA or CSV files containing the template sequences.

hdr.structure A character vector describing the information contained in the FASTA head-
ers. In case that the headers of fasta. file contain template group information,
please include the keyword "GROUP" in hdr.structure. If the numer of ele-
ments provided via hdr.structure is shorter than the actual header structure,
the missing fields are ignored.

delim Delimiter for the information in the FASTA headers.
id.column Field in the header to be used as the identifier of individual template sequences.
rm.keywords A vector of keywords that are used to remove templates whose headers contain

any of the keywords.
remove.duplicates
Whether duplicate sequence shall be removed.

read_templates 53

fw.region The positional interval from the template 5’ end specifying the binding sites
for forward primers. The default fw.region is set to the first 30 bases of the
templates.

rev.region The positional interval from the template 3’ end specifying the binding sites
for reverse primers. The default rev.region is set to the last 30 bases of the
templates.

gap.character The character in the input file representing gaps. Gaps are automatically re-
moved upon input and the default character is "-".

run An identifier for the set of template sequences. By default, run is NULL and its
value is set via template.file.

Details

When supplying a FASTA file with template sequences, the input arguments hdr.structure,
delim, id.column, rm.keywords, remove.duplicates, fw.region, rev.region, gap.character,

and run are utilized. Most importantly, hdr. structure and delim should match the FASTA header
structure. To learn more about setting the primer binding regions, consider the assign_binding_regions
function. In contrast, when supplying a CSV file with template sequences, the data are loaded
without performing any modifications because the CSV file should represent an object of class
Templates, which can be stored using the write_templates function.

Value

An object of class Templates.

See Also

Other template functions: Templates-class, assign_binding_regions, update_template_cvg,
write_templates

Examples

Load templates from a FASTA file
fasta.file <- system.file("extdata”, "IMGT_data”, "templates”,

"Homo_sapiens_IGH_functional_exon.fasta"”, package = "openPrimeR")
hdr.structure <- c("ACCESSION", "GROUP", "SPECIES", "FUNCTION")
template.df.fasta <- read_templates(fasta.file, hdr.structure, "|", "GROUP")

Load mutliple FASTA files
fasta.files <- c(fasta.file, fasta.file)

template.df.fastas <- read_templates(fasta.files, hdr.structure, "|", "GROUP")
Load templates from a previously stored CSV file
csv.file <- system.file("extdata”, "IMGT_data"”, "comparison”,

"templates”, "IGH_templates.csv"”, package = "openPrimeR")

template.df.csv <- read_templates(csv.file)

Load multiple CSV files:

csv.files <- c(csv.file, csv.file)
template.df.csvs <- read_templates(csv.files)
Load a mixture of FASTA/CSV files:
mixed.files <- c(csv.file, fasta.file)
template.data <- read_templates(mixed.files)

54 runTutorial

RefCoverage Experimental Coverage Data.

Description

Experimental Coverage Data.

Usage
data(RefCoverage)

Format

The feature.matrix data frame contains the properties of the primer set from Tiller et al. as well
as a primer set that was designed by openPrimeR. The column Experimental_Coverage indicates
the experimentally determined coverage, while the other columns relate to properties of the primers
that were computed with openPrimeR. The ref.data list contains the raw experimental coverage
of individual primers from the primer sets from Tiller and openPrimeR, which both target templates
from the IGH locus. The rows of the data frames indicate primers and the columns indicate IGH
templates for which experimental coverage was determined. The cell entries are hex codes. Each
hex code represents a color indicating a certain experimental coverage status. Hex codes represent-
ing red shades indicate no or little amplification, while hex codes for green shades indicate high
yields.

References

Tiller, Thomas, et al. "Efficient generation of monoclonal antibodies from single human B cells
by single cell RT-PCR and expression vector cloning." Journal of immunological methods 329.1
(2008): 112-124.

Examples

data(RefCoverage)

runTutorial The openPrimeR Tutorial.

Description

Starts a Shiny app containing the openPrimeR tutorial, which was built using the learnr package.
The application starts locally and should open a new tab in your default browser. If no browser is
opened, please consider the console output to identify the local port on which the server is running.

Usage
runTutorial(dev = FALSE)

Arguments

dev A logical indicating whether to start the development version of the tutorial (de-
fault: FALSE).

score_conservation 55

Value

Opens the openPrimeR tutorial in a web browser.

Note

The Shiny app can be started only if you fulfill all of the suggested package dependencies for
the Shiny framework, so please ensure that you’ve installed openPrimeR including all suggested
dependencies.

Examples

Open the tutorial
Not run:
runTutorial()

End(Not run)

score_conservation Scoring of Template Conservation.

Description

Determines the sequence conservation scores of a set of templates using Shannon entropy.

Usage

n_mn

score_conservation(template.df, gap.char = , win.len = 30,
by.group = TRUE)

Arguments
template.df A Templates object providing the sequence conservation shall be determined.
gap.char The alignment gap character. By default, this is set to "-".
win.len The size of a window for evaluating conservation. The default window size is
set to 30.
by.group Whether the determination of binding regions should be stratified according to
the groups defined in template.df. The default is TRUE.
Value

A list containing Entropies and Alignments. Entropies are given as a data frame with conservation
scores. Each column indicates a position in the alignment of template sequences and each row gives
the entropies of the sequences belonging to a specific group of template sequences. Alignments are
given as lists of DNABin objects, where each object gives the alignment corresponding to one group
of template sequences.

Note

Requires the MAFFT software for multiple alignments (http://mafft.cbrc.jp/alignment/software/).

56 score_degen

Examples

Not run:
data(Ippolito)
entropy.data <- score_conservation(template.df, gap.char = "-", win.len = 18, by.group = TRUE)

End(Not run)

score_degen Primer Degeneration Score.

Description

Determines the degeneration score of a sequence.

Usage
score_degen(seq, gap.char = "-")
Arguments
seq A list of vectors with single characters.
gap.char The gap character in sequences.
Details

The degeneration of an ambiguous sequence is defined as the number of unambiguous sequences
that the ambiguous sequence represents. Let a sequence S of length n be represented by a collection
of sets such that

S =s51,82,...,8,

where s; indicates the set of unambiguous bases found at position ¢ of the primer. Then the degen-
eracy D of a primer can be defined as
D =]]lsi
i

where |s;| provides the number of disambiguated bases at position 4.

Value

The number of unambiguous sequences represented by seq.

See Also

Other primer functions: Primers-class, check_constraints, check_restriction_sites, create_report,
design_primers, filter_primers,get_initial_primers,primer_significance,write_primers

score_primers 57

score_primers Scoring of Primers.

Description

Computes scores for a set of primers based on the deviations of the primers from the constraints.

Usage

score_primers(primer.df, settings,
active.constraints = names(constraints(settings)), alpha = 0.5)

Arguments
primer.df A Primers object containing the primers that are to be scored.
settings A DesignSettings object containing the settings that are evaluated when com-

puting the deviation.

active.constraints
A character vector of constraint identifiers that are considered for scoring the
primers.

alpha A numeric that is used to determine the trade-off between the impact of the
maximal observed deviation and the total deviation. At its default alpha is set
to 0.5 such that the maximal deviation and the total deviation have an equal
weight when computing the penalties.

Details

The penalty of a primer is computed in the following way. Let d be a vector indicating the absolute
deviations from individual constraints and let p be the scalar penalty that is assigned to a primer.
We define

p:a-maxdi+2(l—a)~di

such that for large values of alpha the maximal deviation dominates giving rise to a local penalty
(reflecting the largest absolute deviation) and for small alpha the total deviation dominates giving
rise to a global penalty (reflecting the sum of constraint deviations). When alpha is 1 only the most
extreme absolute deviation is considered and when alpha is O the sum of all absolute deviations is
computed.

Value

A data frame containing scores for the primers.

Examples

data(Ippolito)
primer.scores <- score_primers(primer.df, settings)

58 select_regions_by_conservation

select_regions_by_conservation
Selection of Primer Binding Regions by Conservation.

Description

Computes Shannon entropy for putative binding regions and determines the most conserved regions.

Usage

n_n

select_regions_by_conservation(template.df, gap.char = , win.len = 30,
by.group = TRUE, direction = c("both”, "fw", "rev"))

Arguments
template.df A Templates object containing the template sequences for which the binding
regions shall be determined according to conservation.
gap.char The alignment gap character. This is "-" by default.
win.len The extent of the desired primer binding region. This should be smaller than the
allowed.region. The default is 30.
by.group Shall the determination of binding regions be stratified according to the groups
defined in template.df. By default, this is set to TRUE.
direction Whether regions shall be selected for primers of both directions ("both"), for-
ward primers ("fw"), or reverse primers ("rev"). The default is "both".
Value

A Templates object with adjusted binding regions. The attribute entropies gives a data frame
with positional entropies and the attribute alignments gives the alignments of the templates.

Note

Requires the MAFFT software for multiple alignments (http://mafft.cbrc.jp/alignment/software/).

Examples

Not run:
data(Ippolito)
new.template.df <- select_regions_by_conservation(template.df)

End(Not run)

startApp 59

startApp The openPrimeR Shiny Application.

Description

Starts the openPrimeR Shiny application. A new tab should open in your default browser. If no
browser is opened, please consider the console output to identify the local port on which the server
is running and manually open the shown URL.

Usage

startApp()

Value

Opens the Shiny app in a web browser.

Note

The Shiny app can be started only if you fulfill all of the suggested package dependencies for
the Shiny framework, so please ensure that you’ve installed openPrimeR including all suggested
dependencies.

Examples

Start the shiny app
Not run:
startApp()

End(Not run)

subset_primer_set Optimal Primer Subsets.

Description

Determines subsets of the input primer set that are optimal with regard to the number of covered
template sequences.

Usage

subset_primer_set(primer.df, template.df, k = 1, groups = NULL,
identifier = NULL, cur.results.loc = NULL)

60 Templates-class

Arguments

primer.df An objectc of class Primers providing the primers for which optimal subsets
should be constructed.

template.df An object of class Templates providing the template sequences that are targeted
by primer.df.

k The spacing between generated primer subset sizes. By default, k is set to 1 such
that all primer subsets are constructed.

groups The identifiers of template groups according to which coverage should be deter-
mined. By default, groups is set to NULL such that all all covered templates are
considered.

identifier An identifier for storing the primer set. By default, identifier is set to NULL.

cur.results.loc
Directory for storing the results. By default, cur.results.loc is set to NULL,
which means that no results are stored.

Details

The optimal subsets are identified by solving an integer-linear program. Since the quality of the
primers (in terms of properties) is not taken into account when creating the subsets, this method
should only be used for primer sets that are already of high quality.

Value

A list with optimal primer subsets, each of class Primers.

Examples

data(Ippolito)
primer.subsets <- subset_primer_set(primer.df, template.df)

Templates-class The Templates Class.

Description

The Templates class encapsulates a data frame containing the sequencs of the templates, their
binding regions, as well as additional information (e.g. template coverage).

Usage

Templates(...)

Arguments

A data frame fulfilling the structural requirements for initializing a Templates
object.

Tiller 61

Details

In the following you can find a description of the most important columns that can be found in an
object of class Templates. Note that angle brackets in the column names indicate the existence of
multiple possibilities.

ID The identifiers of the templates.

Identifier The internal identifiers of the templates.

Group The identifiers of the groups that the templates belong to.

Allowed_Start_<fw|rev> The start of the interval in the templates where binding is allowed for
forward and reverse primers, respectively.

Allowed_End_<fw|rev> The end of the interval in the templates where binding is allowed for
forward and reverse primers, respectively.

Allowed_<fw|rev> The template sequence where binding is allowed for forward and reverse primers,
respectively.

Run An identifier for the set of template sequences.

Covered_By_Primers The identifiers of primers covering the templates, when the template cover-
age has been annotated.

primer_coverage The number of primers covering the templates, when the template coverage has
been annotated.

Value

A Templates object, an instance of a data frame.

See Also

read_templates for loading template sequences, assign_binding_regions for adjusting the
primer binding regions, update_template_cvg for setting the template coverage, plot_template_cvg
for plotting the template coverage,

Other template functions: assign_binding_regions, read_templates, update_template_cvg,
write_templates

Examples

fasta.file <- system.file("”extdata”, "IMGT_data”, "templates”,
"Homo_sapiens_IGH_functional_exon.fasta”, package = "openPrimeR")

hdr.structure <- c("ACCESSION", "GROUP", "SPECIES", "FUNCTION")

template.df <- read_templates(fasta.file, hdr.structure, "|", "GROUP")

Tiller Evaluated Primer Data from Tiller et al.

Description

Primer and template data for IGHV from Tiller et al.

Usage
data(Tiller)

62 update_template_cvg

Format

tiller.primer.df provides a Primers object, tiller.template.df provides the corresponding
Templates object, and tiller.settings provides the DesignSettings object that was used for
evaluating tiller.primer.df. DesignSettings object tiller.settings.

References

Tiller, Thomas, et al. "Efficient generation of monoclonal antibodies from single human B cells
by single cell RT-PCR and expression vector cloning." Journal of immunological methods 329.1
(2008): 112-124.

Examples

data(Tiller)
tiller.primer.df
tiller.template.df
constraints(tiller.settings)

update_template_cvg Annotation of Template Coverage.

Description

Annotates the templates with coverage information.

Usage

update_template_cvg(template.df, primer.df, mode.directionality = NULL)

Arguments

template.df An object of class Templates.

primer.df An object of class Primers containing primers with annotated coverage that are
to be used to update the template coverage in template.df.

mode.directionality
Directionality of primers. The default is NULL, which means that the direction-
ality of primers is identified automatically.

Value

An object of class Templates with updated coverage columns.

See Also

Other template functions: Templates-class, assign_binding_regions, read_templates,write_templates

Examples

data(Ippolito)
template.df <- update_template_cvg(template.df, primer.df)

write_primers 63

write_primers Storing Primers to Disk.

Description

Writes a set of primers to disk, either as a FASTA or CSV file.

Usage
write_primers(primer.df, fname, ftype = c("FASTA", "CSV"))

Arguments
primer.df An object of class Primers to be stored to disk.
fname The path to the file where the primers should be stored.
ftype A character vector giving the type of the file. This can either be "FASTA" or
"CSV" (default: "FASTA").
Value

Stores primers to fname.

See Also

Other primer functions: Primers-class, check_constraints, check_restriction_sites, create_report,
design_primers, filter_primers,get_initial_primers, primer_significance, score_degen

Examples
data(Ippolito)
Store primers as FASTA
fname.fasta <- tempfile("my_primers”, fileext = ".fasta")

write_primers(primer.df, fname.fasta)

Store primers as CSV

fname.csv <- tempfile("my_primers”, fileext = ".csv")
write_primers(primer.df, fname.csv, "CSV")

write_settings Storing Design Settings to Disk.

Description

Stores primer analysis settings to a file in XML format.

Usage

write_settings(settings, filename)

64 write_templates

Arguments
settings A DesignSettings object to be stored to disk.
filename A character vector specifying the location where the settings should be stored as
an XML file.
Value

Outputs the return status from closing the connection.

Examples

xml <- settings.xml <- system.file("extdata”, "settings”,
"C_Tagq_PCR_high_stringency.xml”, package = "openPrimeR")

settings <- read_settings(xml)

out.file <- tempfile("my_settings”, fileext = ".xml")

write_settings(settings, out.file)

write_templates Storing Templates to Disk.

Description

Stores a set of templates as a FASTA or CSV file.

Usage
write_templates(template.df, fname, ftype = c("FASTA", "CSV"))

Arguments

template.df An object of class Templates to be stored to disk.
fname The path to the file where the templates should be stored.

ftype A character vector giving the filetype. This can either be "FASTA" or "CSV"
(default: "FASTA").

Value

Stores templates to fname.

See Also

Other template functions: Templates-class, assign_binding_regions, read_templates, update_template_cvg

Examples

data(Ippolito)

Store templates as FASTA

fname.fasta <- tempfile("my_templates”, fileext = ".fasta")
write_templates(template.df, fname.fasta)

Store templates as CSV

fname.csv <- tempfile("my_templates”, fileext = ".csv")
write_templates(template.df, fname.csv, "CSV")

Index

*prk:(ﬂasses conOptions,DesignSettings-method
ConstraintOptions-class, 14 (conOptions), 12
ConstraintSettings-class, 16 conOptions<- (conOptions), 12
CoverageConstraints-class, 19 conOptions<-,DesignSettings-method
PCR_Conditions-class, 35 (conOptions), 12
Primers-class, 47 constraintlLimits, 4, 12, 13, 14, 16, 18, 20,
Templates-class, 60 23, 24, 34, 35, 52

xTopic Primers constraintLimits,DesignSettings-method
check_constraints, 7 (constraintLimits), 13
create_report, 21 constraintLimits<- (constraintLimits),
design_primers, 24 13
filter_primers, 27 constraintLimits<-,DesignSettings-method
read_primers, 50 (constraintLimits), 13
write_primers, 63 ConstraintOptions, 12, 17

«Topic Settings ConstraintOptions
conOptions, 12 (ConstraintOptions-class), 14
constraintLimits, 13 ConstraintOptions-class, 14
constraints, 15 constraints, 4, 12-14, 15, 18, 20, 23, 24, 34
cvg_constraints, 22 35,52
giziizsettings—class,ZS constraints,AbstractConstraintSettings-method

(constraints), 15
constraints,DesignSettings-method
(constraints), 15
constraints<- (constraints), 15
constraints<-,AbstractConstraintSettings,list-method
(constraints), 15
constraints<-,DesignSettings, ANY-method
(constraints), 15
ConstraintSettings, 8, 13, 15, 23, 26, 35
ConstraintSettings
(ConstraintSettings-class), 16
ConstraintSettings-class, 16
CoverageConstraints, 17, 20, 22, 23

write_settings, 63
xTopic Templates
adjust_binding_regions, 5
assign_binding_regions, 6
read_templates, 52
write_templates, 64
*Topic datasets
Comparison, 11
Ippolito, 33
RefCoverage, 54
Tiller, 61

adjust_binding_regions, 5

assign_binding_regions, 6, 6, 53, 61, 62, 64 CoverageConstraints
(CoverageConstraints-class), 19
check_constraints, 5,7, 10, 16, 22, 26, 27, CoverageConstraints-class, 19
32,4749, 56, 63 create_coverage_xls, 20
check_restriction_sites, 9,9, 22, 26, 27, create_report, 5, 9, 10, 21, 26, 27, 32, 48,
32,48, 49, 56, 63 49, 56, 63
classify_design_problem, 10 cvg_constraints, 4, 12-14, 16, 18, 20, 22,
Comparison, 11 24, 34, 35, 52
conOptions, 4, 12, 13, 14, 16, 18, 20, 23, 24, cvg_constraints,DesignSettings-method
34, 35,52 (cvg_constraints), 22

65

66

cvg_constraints<- (cvg_constraints), 22

cvg_constraints<-,DesignSettings-method

(cvg_constraints), 22

design_primers, 4,9, 10, 22, 23,24, 27, 32,
48, 49, 56, 63

DesignSettings, 4, 8, 26, 27

DesignSettings (DesignSettings-class),
23

DesignSettings-class, 23

feature.matrix (RefCoverage), 54
filter_primers, 9, 10, 16, 22, 23, 26, 27, 32,
48, 49, 56, 63

get_comparison_table, 28

get_cvg_ratio, 28, 48

get_cvg_stats, 5, 29

get_cvg_stats_primer, 30

get_initial_primers, 9, 10, 22, 26, 27, 31,
48, 49, 56, 63

Ippolito, 33

openPrimeR (openPrimeR-package), 4
openPrimeR-package, 4

parallel_setup, 33
PCR, 4, 12-14, 16, 18, 20, 23, 24, 34, 35, 52
PCR,DesignSettings-method (PCR), 34
PCR<- (PCR), 34
PCR<-,DesignSettings-method (PCR), 34
PCR_Conditions, 23, 34
PCR_Conditions (PCR_Conditions-class),
35
PCR_Conditions-class, 35
plot_conservation, 36
plot_constraint, 37, 38, 39
plot_constraint_deviation, 5, 37, 38, 39
plot_constraint_fulfillment, 37, 38, 39
plot_cvg_constraints, 40
plot_cvg_vs_set_size, 40, 42
plot_penalty_vs_set_size, 41,41
plot_primer, 42, 4346
plot_primer_binding_regions, 42, 43,
4446
plot_primer_cvg, 42, 43, 44, 45, 46
plot_primer_subsets, 42-44, 45, 46
plot_template_cvg, 4245, 46, 61
primer.data (Comparison), 11
primer.df (Ippolito), 33
primer_significance, 9, 10, 22, 26, 27, 32,
39, 48, 49, 56, 63
Primers, 50

INDEX

Primers (Primers-class), 47
Primers-class, 47

read_primers, 5,47, 48, 50

read_settings, 4, 12-14, 16, 18, 20, 23, 24,
34, 35,51

read_templates, 4, 5,7,52,61, 62, 64

ref.data (RefCoverage), 54

RefCoverage, 54

runTutorial, 54

score_conservation, 55

score_degen, 9, 10, 22, 26, 27, 32, 48, 49, 56,
63

score_primers, 41,57

select_regions_by_conservation, 58

settings (Ippolito), 33

startApp, 59

subset_primer_set, 45, 59

template.data (Comparison), 11
template.df (Ippolito), 33
Templates, 4, 53

Templates (Templates-class), 60
Templates-class, 60

Tiller, 61

tiller.primer.df (Tiller), 61
tiller.settings (Tiller), 61
tiller.template.df (Tiller), 61

update_template_cvg, 7, 53, 61, 62, 64

write_primers, 9, 10, 22, 26, 27, 32, 48-50,
56, 63

write_settings, 24, 51, 63

write_templates, 7, 53,61, 62, 64

	openPrimeR-package
	adjust_binding_regions
	assign_binding_regions
	check_constraints
	check_restriction_sites
	classify_design_problem
	Comparison
	conOptions
	constraintLimits
	ConstraintOptions-class
	constraints
	ConstraintSettings-class
	CoverageConstraints-class
	create_coverage_xls
	create_report
	cvg_constraints
	DesignSettings-class
	design_primers
	filter_primers
	get_comparison_table
	get_cvg_ratio
	get_cvg_stats
	get_cvg_stats_primer
	get_initial_primers
	Ippolito
	parallel_setup
	PCR
	PCR_Conditions-class
	plot_conservation
	plot_constraint
	plot_constraint_deviation
	plot_constraint_fulfillment
	plot_cvg_constraints
	plot_cvg_vs_set_size
	plot_penalty_vs_set_size
	plot_primer
	plot_primer_binding_regions
	plot_primer_cvg
	plot_primer_subsets
	plot_template_cvg
	Primers-class
	primer_significance
	read_primers
	read_settings
	read_templates
	RefCoverage
	runTutorial
	score_conservation
	score_degen
	score_primers
	select_regions_by_conservation
	startApp
	subset_primer_set
	Templates-class
	Tiller
	update_template_cvg
	write_primers
	write_settings
	write_templates
	Index

